cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236770 a(n) = n*(n + 1)*(3*n^2 + 3*n - 2)/8.

Original entry on oeis.org

0, 1, 12, 51, 145, 330, 651, 1162, 1926, 3015, 4510, 6501, 9087, 12376, 16485, 21540, 27676, 35037, 43776, 54055, 66045, 79926, 95887, 114126, 134850, 158275, 184626, 214137, 247051, 283620, 324105, 368776, 417912, 471801, 530740, 595035, 665001, 740962
Offset: 0

Views

Author

Bruno Berselli, Jan 31 2014

Keywords

Comments

After 0, first trisection of A011779 and right border of A177708.

Crossrefs

Partial sums of A004188.
Cf. similar sequences on the polygonal numbers: A002817(n) = A000217(A000217(n)); A000537(n) = A000290(A000217(n)); A037270(n) = A000217(A000290(n)); A062392(n) = A000384(A000217(n)).
Cf. sequences of the form A000217(m)+k*A000332(m+2): A062392 (k=12); A264854 (k=11); A264853 (k=10); this sequence (k=9); A006324 (k=8); A006323 (k=7); A000537 (k=6); A006322 (k=5); A006325 (k=4), A002817 (k=3), A006007 (k=2), A006522 (k=1).

Programs

  • Magma
    [n*(n+1)*(3*n^2+3*n-2)/8: n in [0..40]];
  • Mathematica
    Table[n (n + 1) (3 n^2 + 3 n - 2)/8, {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,12,51,145},40] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    for(n=0, 40, print1(n*(n+1)*(3*n^2+3*n-2)/8", "));
    

Formula

G.f.: x*(1 + 7*x + x^2)/(1 - x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A000326(A000217(n)).
a(n) = A000217(n) + 9*A000332(n+2).
Sum_{n>=1} 1/a(n) = 2 + 4*sqrt(3/11)*Pi*tan(sqrt(11/3)*Pi/2) = 1.11700627139319... . - Vaclav Kotesovec, Apr 27 2016

A177711 Natural numbers which are not sums of one or more distinct primorials.

Original entry on oeis.org

4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2010

Keywords

Comments

Numbers with a digit larger than one in primorial base representation, A049345. Numbers k for which A276086(k) is not squarefree. - Antti Karttunen, Feb 17 2025

Examples

			1 and 2 are not in the sequence, as they are the first and second primorials, 0# and 1#. 3 is not in the sequence, as 3 = 1+2. Neither 4 nor 5 can be the sum of distinct primorials (i.e. 4=2+2 or 5 = 2+2+1 repeat a primorial). 6 is not in the sequence, as it is 3#. 7 and 8 are not in the sequence as 7 = 6+1 and 8 = 6+2. 9 is not in the sequence, as 9 = 6+2+1.
		

Crossrefs

Complement of A276156.
Positions of terms > 1 in A328114.
Subsequences: A380535, A381034.

Programs

  • PARI
    is_A177711(n) = { my(p=2); while(n, if(n%p > 1, return(1)); n = n\p; p = nextprime(1+p)); (0); }; \\ Antti Karttunen, Feb 17 2025

Formula

COMPLEMENT of {Primorial numbers A002110 UNION A177689 Sums of 2 distinct primorials UNION Sums of 3 distinct primorials A177697 UNION Sums of 4 distinct primorials A177709 UNION ...}.
{k such that A328114(k) > 1}. - Antti Karttunen, Feb 17 2025

A177709 Sums of 4 distinct primorials.

Original entry on oeis.org

39, 219, 243, 247, 248, 2319, 2343, 2347, 2348, 2523, 2527, 2528, 2551, 2552, 2556, 30039, 30063, 30067, 30068, 30243, 30247, 30248, 30271, 30272, 30276, 32343, 32347, 32348, 32371, 32372, 32376, 32551, 32552, 32556, 32580, 510519, 510543
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2010

Keywords

Comments

This is to numbers that are the sum of 4 different primes (A177708) as primorials (A002110) are to primes (A000040). The subsequence of primes among these sums of 4 distinct primorials begins: 2347, 2551, 30271, 32371, 510751. The subsequence of nontrivial powers a^b with b>1 begin: a(3) = 243, a(24) = 30276 = 30030+210+30+6 = 2^2 x 3^2 x 29^2.

Examples

			a(1) = 39 = 30+6+2+1
a(2) = 219 = 210+6+2+1
a(3) = 243 = 210+30+2+1 = 3^5
a(4) = 247 = 210+30+6+1
a(5) = 248 = 210+30+6+2.
		

Crossrefs

Formula

{a(n)} = {A002110(i) + A002110(j) + A002110(k)+ A002110(L) for distinct i, j, k, L}.

Extensions

Corrected (2348 inserted) by R. J. Mathar, May 15 2010
Showing 1-3 of 3 results.