cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259754 Numbers that are congruent to {3,9,15,18,21} mod 24.

Original entry on oeis.org

3, 9, 15, 18, 21, 27, 33, 39, 42, 45, 51, 57, 63, 66, 69, 75, 81, 87, 90, 93, 99, 105, 111, 114, 117, 123, 129, 135, 138, 141, 147, 153, 159, 162, 165, 171, 177, 183, 186, 189, 195, 201, 207, 210, 213, 219, 225, 231, 234, 237, 243, 249, 255, 258, 261, 267
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 3/2.

Crossrefs

Cf. A000914.
Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259749, A259750, A259751, A259752, A259755.

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 2/3 &]
    Rest@ CoefficientList[Series[3 x (1 + x) (1 + x + x^2 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)), {x, 0, 56}], x] (* Michael De Vlieger, Aug 25 2016 *)
    LinearRecurrence[{1,0,0,0,1,-1},{3,9,15,18,21,27},60] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    Vec(3*x*(1+x)*(1+x+x^2+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 25 2016

Formula

A259748(a(n))/a(n) = 2/3.
a(n) = 3*A047584(n). - Michel Marcus, Jul 18 2015
From Colin Barker, Aug 25 2016: (Start)
a(n) = a(n-1)+a(n-5)-a(n-6) for n>6.
G.f.: 3*x*(1+x)*(1+x+x^2+x^4) / ((1-x)^2*(1+x+x^2+x^3+x^4)).
(End)

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A047418 Numbers that are congruent to {0, 2, 3, 4, 6} mod 8.

Original entry on oeis.org

0, 2, 3, 4, 6, 8, 10, 11, 12, 14, 16, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 34, 35, 36, 38, 40, 42, 43, 44, 46, 48, 50, 51, 52, 54, 56, 58, 59, 60, 62, 64, 66, 67, 68, 70, 72, 74, 75, 76, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 94, 96, 98, 99, 100, 102
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Filtered([0..103],n->n mod 8 = 0 or n mod 8 = 2 or n mod 8 = 3 or n mod 8 = 4 or n mod 8 = 6); # Muniru A Asiru, Oct 23 2018
  • Magma
    [n : n in [0..150] | n mod 8 in [0, 2, 3, 4, 6]]; // Wesley Ivan Hurt, Aug 08 2016
    
  • Maple
    A047418:=n->8*floor(n/5)+[(0, 2, 3, 4, 6)][(n mod 5)+1]: seq(A047418(n), n=0..100); # Wesley Ivan Hurt, Aug 08 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,2,3,4,6}, Mod[#,8]]&] (* or *) LinearRecurrence[{1,0,0,0,1,-1}, {0,2,3,4,6,8}, 70] (* Harvey P. Dale, Oct 01 2015 *)

Formula

G.f.: x^2*(2 + x + x^2 + 2*x^3 + 2*x^4)/((x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Aug 08 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 45 - 2*(n mod 5) + 3*((n + 1) mod 5) + 3*((n + 2) mod 5) - 2*((n + 3) mod 5) - 2*((n + 4) mod 5))/25.
a(5*k) = 8*k - 2, a(5*k-1) = 8*k - 4, a(5*k-2) = 8*k - 5, a(5*k-3) = 8*k - 6, a(5*k-4) = 8*k - 8. (End)
a(n) = (40*n - 45 + 2*cos(2*Pi*(n - 1)/5) - 2*cos(2*Pi*n/5) - 2*cos(4*Pi*n/5) - 6*cos(2*Pi*(n + 1)/5) - 6*cos(Pi*(2*n + 1)/5) + 6*cos(2*Pi*(2*n + 1)/5) - 2*cos(Pi*(4*n + 1)/5) + 6*sin(Pi*(8*n + 3)/10))/25. - Wesley Ivan Hurt, Oct 10 2018
Showing 1-2 of 2 results.