cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232864 Number of permutations of n elements not cyclically containing the consecutive pattern 123.

Original entry on oeis.org

1, 1, 2, 3, 12, 45, 234, 1323, 8856, 65529, 543510, 4937031, 49030596, 526930677, 6101871426, 75686176035, 1001517264432, 14079895613937, 209594037600558, 3293305758743679, 54470994630103260, 945988795762018029, 17211193919411902938, 327371367293394753627
Offset: 0

Views

Author

Richard Ehrenborg, Dec 01 2013

Keywords

Examples

			a(4) = 12 comes from the 3 permutations 1324, 1423 and 1432, and by cyclically shifting we obtain 3 * 4 = 12 permutations.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 1), j=1..u))
        end:
    a:= n-> `if`(n=0, 1, n*b(0, n-1, 1)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2013
  • Mathematica
    b[u_,o_,t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 1], {j, 1, u}]];
    a[n_]:= If[n==0, 1, n*b[0, n-1, 1]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 14 2017, after Alois P. Heinz *)

Formula

a(n) = n! * Sum_{k=-oo..oo} (sqrt(3)/(2*Pi*(k+1/3)))^n for n >= 2.
a(n) = A080635(n-1)*n for n>0. - Alois P. Heinz, Dec 01 2013