A232869
Primes p such that the average of the fourth powers of primes up to p is an integer.
Original entry on oeis.org
2, 26893, 741080929, 95114243761787, 146234140655742407
Offset: 1
A125826
Numbers m that divide 2^7 + 3^7 + 5^7 + ... + prime(m)^7.
Original entry on oeis.org
1, 25, 1677, 21875, 538513, 1015989, 18522325, 1130976595, 1721158369, 561122374231, 1763726985077, 2735295422833, 7631117283951, 22809199833151, 46929434362563, 49217568518075, 151990420653423, 174172511353413, 1258223430425543
Offset: 1
Cf.
A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
-
s = 0; Do[s = s + Prime[n]^7; If[ Mod[s, n] == 0, Print[n]], {n, 25000}]
-
s=0; n=0; forprime(p=2, 4e9, s+=p^7; if(s%n++==0, print1(n", "))) \\ Charles R Greathouse IV, Mar 16 2011
Showing 1-2 of 2 results.
Comments