cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232896 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4), where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 8.

Original entry on oeis.org

1, 3, 5, 8, 12, 18, 27, 41, 63, 98, 154, 244, 389, 623, 1001, 1612, 2600, 4198, 6783, 10965, 17731, 28678, 46390, 75048, 121417, 196443, 317837, 514256, 832068, 1346298, 2178339, 3524609, 5702919, 9227498, 14930386, 24157852, 39088205, 63246023, 102334193
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2013

Keywords

Comments

Conjecture: a(n) is the position of 2*n-1, for n >= 1, in the sequence S = A232895 of positive integers generated by these rules: 1 and 2 are in S; if x is in S then x + 2 and 2*x are in S, where duplicates are deleted as they occur.

Examples

			a(5) = 3*a(4) - 2*a(3) - a(4) + a(5) = 3*8 - 2*5 - 3 + 1 = 12.
		

Crossrefs

Cf. A232895.

Programs

  • Magma
    I:=[1,3,5,8]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Mathematica
    a[1] = 1; a[2] = 3; a[3] = 5; a[4] = 8; a[n_] := a[n] = 3*a[n - 1] - 2*a[n - 2] - a[n - 3] + a[n - 4]; t = Table[a[n], {n, 1, 100}]
    CoefficientList[Series[(1 - 2 x^2) / ((1 - x)^2 (1 - x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 18 2015 *)
    LinearRecurrence[{3, -2, -1, 1}, {1, 3, 5, 8}, 39] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    Vec(x*(1-2*x^2)/((1-x)^2*(1-x-x^2)) + O(x^50)) \\ Michel Marcus, Mar 18 2015

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4), where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 8.
a(n) = n-1 + A000045(n+1). - Tom Edgar, Mar 09 2015
G.f.: x*(1-2*x^2)/((1-x)^2*(1-x-x^2)). - Vincenzo Librandi, Mar 18 2015
a(n) = -1 + (2^(-1-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) + n. - Colin Barker, Mar 11 2017
a(n) = Sum_{k=1..n} A001611(k-1). - Ehren Metcalfe, Apr 15 2019