cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232933 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping, cyclic wrap-around) occurrences of the consecutive step pattern UDU (U=up, D=down); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 1, 0, 2, 3, 3, 12, 4, 8, 35, 45, 40, 144, 348, 132, 96, 910, 1862, 1316, 952, 5976, 11600, 14808, 5760, 2176, 39942, 100260, 123606, 63360, 35712, 306570, 919270, 1069910, 910650, 343040, 79360, 2698223, 8427243, 11694397, 10673641, 4477440, 1945856
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2013

Keywords

Examples

			T(2,1) = 2: 12, 21 (the two U's of UDU overlap).
T(3,0) = 3: 132, 213, 321.
T(3,1) = 3: 123, 231, 312.
T(4,0) = 12: 1243, 1342, 1432, 2134, 2143, 2431, 3124, 3214, 3421, 4213, 4312, 4321.
T(4,1) = 4: 1234, 2341, 3412, 4123.
T(4,2) = 8: 1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231.
Triangle T(n,k) begins:
:  0 :      1;
:  1 :      1;
:  2 :      0,      2;
:  3 :      3,      3;
:  4 :     12,      4,       8;
:  5 :     35,     45,      40;
:  6 :    144,    348,     132,     96;
:  7 :    910,   1862,    1316,    952;
:  8 :   5976,  11600,   14808,   5760,   2176;
:  9 :  39942, 100260,  123606,  63360,  35712;
: 10 : 306570, 919270, 1069910, 910650, 343040, 79360;
		

Crossrefs

Column k=0 gives A232899.
Row sums give A000142.
T(2n,n) gives A009752(n) = 2n * A000182(n) for n>0.
T(2n+1,n) gives (2n+1) * A024283(n) for n>0.
Cf. A295987.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0,
         `if`(t=2, x, 1), expand(
          add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)+
          add(b(u-j, o+j-1, `if`(t=2, 3, 1)), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))
            (`if`(n<2, 1, n* b(0, n-1, 1))):
    seq(T(n), n=0..12);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, If[t == 2, x, 1], Expand[Sum[ b[u + j - 1, o - j, 2]*If[t == 3, x, 1], {j, 1, o}] + Sum[b[u - j, o + j - 1, If[t == 2, 3, 1]], {j, 1, u}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]]   [If[n < 2, 1, n*b[0, n - 1, 1]]];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)