A232980 The Gauss factorial n_3!.
1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400, 246400, 246400, 3203200, 44844800, 44844800, 717516800, 12197785600, 12197785600, 231757926400, 4635158528000, 4635158528000, 101973487616000, 2345390215168000, 2345390215168000, 58634755379200000, 1524503639859200000, 1524503639859200000
Offset: 0
Keywords
Links
- J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
- J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
Crossrefs
Programs
-
Magma
k:=3; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
-
Maple
Gf:=proc(N,n) local j,k; k:=1; for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end; f:=n->[seq(Gf(N,n),N=0..40)]; f(3);
Comments