cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232981 The Gauss factorial n_5!.

Original entry on oeis.org

1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576, 798336, 9580032, 124540416, 1743565824, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 41363226782215962624
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=5; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(5);
  • Mathematica
    Table[n!/(5^#*#!) &@ Floor[n/5], {n, 0, 25}] (* Michael De Vlieger, Mar 06 2017 *)

Formula

From Robert Israel, Mar 06 2017: (Start)
a(n) = a(n-1) if 5 | n; otherwise n*a(n-1).
a(n) = n!/(5^floor(n/5)*floor(n/5)!). (End)