A233203 a(n) = floor(n^n / 2^n).
1, 0, 1, 3, 16, 97, 729, 6433, 65536, 756680, 9765625, 139312339, 2176782336, 36972058910, 678223072849, 13363461010158, 281474976710656, 6311342330065435, 150094635296999121, 3773536025353076151, 100000000000000000000, 2785962590401641140642, 81402749386839761113321
Offset: 0
Keywords
Examples
a(5) = floor(5^5 / 2^5) = floor(3125 / 32) = 97.
Crossrefs
Programs
-
Maple
A233203:=n->floor((n/2)^n); seq(A233203(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014
-
Mathematica
Table[Floor[(n/2)^n], {n, 0, 30}] (* Wesley Ivan Hurt, Feb 26 2014 *)
-
PARI
a(n) = n^n\2^n; \\ Michel Marcus, Dec 17 2024
-
Python
for n in range(33): print(n**n >> n, end=', ')
Formula
a(n) = floor((n/2)^n).