cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233231 a(n) = 10*a(n-3) - a(n-6) + 4 for n>5, a(0)=2, a(1)=3, a(2)=5, a(3)=12, a(4)=29, a(5)=51.

Original entry on oeis.org

2, 3, 5, 12, 29, 51, 122, 291, 509, 1212, 2885, 5043, 12002, 28563, 49925, 118812, 282749, 494211, 1176122, 2798931, 4892189, 11642412, 27706565, 48427683, 115248002, 274266723, 479384645, 1140837612, 2714960669, 4745418771, 11293128122, 26875339971
Offset: 0

Views

Author

Frank M Jackson, Dec 06 2013

Keywords

Comments

Apart from a(0), a(n) such that the triple (5,a(n),a(n)+1) forms a Heronian triangle. Equivalently, a(n) such that 6*(a(n)+3)*(a(n)-2) is a square. Note that this sequence generates all Heronian triples with a fixed side of 5 except (5,5,8) which is the only solution to Heronian triples of the form (5,x,x+3).

Examples

			a(5)=29 as the triangle with sides (5,29,30) has integer area 72.
		

Crossrefs

Programs

  • Mathematica
    seq[n_] := seq[n]=Which[n==0, 2, n==1, 3, n==2, 5, n==3, 12, n==4, 29, n==5, 51, True, 10seq[n-3]-seq[n-6]+4]; Table[seq[m], {m, 0, 100}]
    LinearRecurrence[{1, 0, 10, -10, 0, -1, 1}, {2, 3, 5, 12, 29, 51, 122}, 30] (* T. D. Noe, Dec 09 2013 *)

Formula

G.f.: (2 + x + 2*x^2 - 13*x^3 + 7*x^4 + 2*x^5 + 3*x^6)/((1 - x)*(1 - 10*x^3 + x^6)). [Bruno Berselli, Dec 09 2013]
a(n) = a(n-1) + 10*a(n-3) - 10*a(n-4) - a(n-6) + a(n-7) for n>6. [Bruno Berselli, Dec 09 2013]