A233246 Sum of squares of cycle lengths for different cycles in Fibonacci-like sequences modulo n.
1, 10, 65, 82, 417, 650, 769, 658, 1793, 4170, 1151, 3026, 4705, 7690, 7137, 5266, 10369, 7562, 6319, 19218, 6977, 11510, 25345, 12818, 52417, 47050, 48449, 35410, 11565, 71370, 28351, 42130, 39615, 41482, 81057, 30674, 103969, 25282, 80033
Offset: 1
Keywords
Examples
For n=4 there are four possible cycles: A trivial cycle of length 1: 0; two cycles of length 6: 0,1,1,2,3,1; and a cycle of length 3: 0,2,2. Hence, a(4)=1+9+36+36=82.
Links
- B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614, 2014 and J. Int. Seq. 17 (2014) # 14.8.5
Programs
-
Mathematica
cl[i_, j_, n_] := (step = 1; first = i; second = j; next = Mod[first + second, n]; While[second != i || next != j, step++; first = second; second = next; next = Mod[first + second, n]]; step) Table[Total[ Flatten[Table[cl[i, j, n], {i, 0, n - 1}, {j, 0, n - 1}]]], {n, 50}]
Comments