cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A233308 Number A(n,k) of tilings of a k X k X n box using k*n bricks of shape k X 1 X 1; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 9, 1, 1, 2, 4, 32, 1, 1, 2, 4, 21, 121, 1, 1, 2, 4, 8, 92, 450, 1, 1, 2, 4, 8, 45, 320, 1681, 1, 1, 2, 4, 8, 16, 248, 1213, 6272, 1, 1, 2, 4, 8, 16, 93, 1032, 4822, 23409, 1, 1, 2, 4, 8, 16, 32, 668, 3524, 18556, 87362, 1, 1, 2, 4, 8, 16, 32, 189, 3440, 13173, 70929, 326041, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 07 2013

Keywords

Examples

			Square array A(n,k) begins:
  1,     1,     1,     1,     1,     1, ...
  1,     2,     2,     2,     2,     2, ...
  1,     9,     4,     4,     4,     4, ...
  1,    32,    21,     8,     8,     8, ...
  1,   121,    92,    45,    16,    16, ...
  1,   450,   320,   248,    93,    32, ...
  1,  1681,  1213,  1032,   668,   189, ...
  1,  6272,  4822,  3524,  3440,  1832, ...
  1, 23409, 18556, 13173, 13728, 11976, ...
		

Crossrefs

Columns k=1-6 give: A000012, A006253, A233289, A233291, A233294, A233424.
Diagonals include: A000079, A068156.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, t, k; d:= isqrt(nops(l));
          if max(l[])>n then 0 elif n=0 then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(x->x-t, l))
        else for k while l[k]>0 do od; b(n, subsop(k=d, l))+
             `if`(irem(k,d)=1 and {seq(l[k+j], j=1..d-1)}={0},
             b(n, [seq(`if`(h-k=0, 1, l[h]), h=1..nops(l))]), 0)+
             `if`(k<=d and {seq(l[k+d*j], j=1..d-1)}={0},
             b(n, [seq(`if`(irem(h-k, d)=0, 1, l[h]), h=1..nops(l))]), 0)
          fi
        end:
    A:= (n, k)-> `if`(k>n, 2^n, b(n, [0$k^2])):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..11);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, t, k}, d= Sqrt[Length[l]]; Which[ Max[l]>n, 0, n==0, 1, Min[l]>0, t=Min[l]; b[n-t, l-t], True, k=Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k->d]]+ If[Mod[k, d]==1 && Union[ Table[ l[[k+j]], {j, 1, d-1}]] == {0}, b[n, Table[ If [h-k=0, 1, l[[h]] ], {h, 1, Length[l]}]], 0]+ If[k <= d && Union[ Table[ l[[k+d*j]], {j, 1, d-1}]] == {0}, b[n, Table[ If[ Mod[h-k, d] == 0, 1, l[[h]] ], {h, 1, Length[l]}]], 0] ] ]; a[n_, k_]:= If[k>n, 2^n, b[n, Array[0&, k^2]]]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

A(n,k) = 2^n = A000079(n) for k>n.
A(n,n) = A068156(n) for n>1.

A233289 Number of tilings of a 3 X 3 X n box using 3n bricks of shape 3 X 1 X 1.

Original entry on oeis.org

1, 2, 4, 21, 92, 320, 1213, 4822, 18556, 70929, 273808, 1057020, 4069737, 15676666, 60424640, 232846801, 897164316, 3457096532, 13321674833, 51332757274, 197801848744, 762200458321, 2937024077340, 11317358546188, 43609682555721, 168043191679374
Offset: 0

Views

Author

Alois P. Heinz, Dec 06 2013

Keywords

Comments

This is a variant of the Jenga game (see link).

Crossrefs

Column k=3 of A233308.

Programs

  • Maple
    gf:= (x^7-x^6+x^5-x^4+4*x^3+2*x^2+x-1)/(-x^10+x^9
         -3*x^8+4*x^7-7*x^6-11*x^5+2*x^4+13*x^3+3*x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: (x^7 -x^6 +x^5 -x^4 +4*x^3 +2*x^2 +x -1) / (-x^10 +x^9 -3*x^8 +4*x^7 -7*x^6 -11*x^5 +2*x^4 +13*x^3 +3*x -1).

A233291 Number of tilings of a 4 X 4 X n box using 4n bricks of shape 4 X 1 X 1.

Original entry on oeis.org

1, 2, 4, 8, 45, 248, 1032, 3524, 13173, 54274, 228712, 917992, 3608665, 14286188, 57438652, 231343468, 926921081, 3700936774, 14793198332, 59241396140, 237333611629, 950127617692, 3801974385964, 15215432779936, 60907523900693, 243826775063490, 976008753961184
Offset: 0

Views

Author

Alois P. Heinz, Dec 06 2013

Keywords

Crossrefs

Column k=4 of A233308.

Formula

G.f.: (x^31 -x^30 -x^29 -3*x^28 -5*x^27 +8*x^26 +3*x^25 -39*x^24 +48*x^23 +34*x^22 -11*x^21 +112*x^20 -63*x^19 -34*x^18 +166*x^17 -188*x^16 -174*x^15 +151*x^14 -251*x^13 +57*x^12 +104*x^11 +171*x^10 -69*x^9 -90*x^8 -30*x^7 -61*x^6 +20*x^5 +31*x^4 +4*x^3 +4*x^2 +x -1) / (-x^35 +x^34 +x^33 +5*x^32 +4*x^31 -11*x^30 -10*x^29 +54*x^28 -65*x^27 -48*x^26 -48*x^25 -195*x^24 +231*x^23 -78*x^22 -473*x^21 +794*x^20 +447*x^19 -981*x^18 +1285*x^17 +395*x^16 -720*x^15 -202*x^14 +640*x^13 +567*x^12 -232*x^11 +638*x^10 -169*x^9 -233*x^8 -256*x^7 -97*x^6 +29*x^5 +52*x^4 -4*x^3 +2*x^2 +3*x -1).
Showing 1-3 of 3 results.