A233308
Number A(n,k) of tilings of a k X k X n box using k*n bricks of shape k X 1 X 1; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 9, 1, 1, 2, 4, 32, 1, 1, 2, 4, 21, 121, 1, 1, 2, 4, 8, 92, 450, 1, 1, 2, 4, 8, 45, 320, 1681, 1, 1, 2, 4, 8, 16, 248, 1213, 6272, 1, 1, 2, 4, 8, 16, 93, 1032, 4822, 23409, 1, 1, 2, 4, 8, 16, 32, 668, 3524, 18556, 87362, 1, 1, 2, 4, 8, 16, 32, 189, 3440, 13173, 70929, 326041, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 9, 4, 4, 4, 4, ...
1, 32, 21, 8, 8, 8, ...
1, 121, 92, 45, 16, 16, ...
1, 450, 320, 248, 93, 32, ...
1, 1681, 1213, 1032, 668, 189, ...
1, 6272, 4822, 3524, 3440, 1832, ...
1, 23409, 18556, 13173, 13728, 11976, ...
-
b:= proc(n, l) option remember; local d, t, k; d:= isqrt(nops(l));
if max(l[])>n then 0 elif n=0 then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(x->x-t, l))
else for k while l[k]>0 do od; b(n, subsop(k=d, l))+
`if`(irem(k,d)=1 and {seq(l[k+j], j=1..d-1)}={0},
b(n, [seq(`if`(h-k=0, 1, l[h]), h=1..nops(l))]), 0)+
`if`(k<=d and {seq(l[k+d*j], j=1..d-1)}={0},
b(n, [seq(`if`(irem(h-k, d)=0, 1, l[h]), h=1..nops(l))]), 0)
fi
end:
A:= (n, k)-> `if`(k>n, 2^n, b(n, [0$k^2])):
seq(seq(A(n, 1+d-n), n=0..d), d=0..11);
-
b[n_, l_] := b[n, l] = Module[{d, t, k}, d= Sqrt[Length[l]]; Which[ Max[l]>n, 0, n==0, 1, Min[l]>0, t=Min[l]; b[n-t, l-t], True, k=Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k->d]]+ If[Mod[k, d]==1 && Union[ Table[ l[[k+j]], {j, 1, d-1}]] == {0}, b[n, Table[ If [h-k=0, 1, l[[h]] ], {h, 1, Length[l]}]], 0]+ If[k <= d && Union[ Table[ l[[k+d*j]], {j, 1, d-1}]] == {0}, b[n, Table[ If[ Mod[h-k, d] == 0, 1, l[[h]] ], {h, 1, Length[l]}]], 0] ] ]; a[n_, k_]:= If[k>n, 2^n, b[n, Array[0&, k^2]]]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A233291
Number of tilings of a 4 X 4 X n box using 4n bricks of shape 4 X 1 X 1.
Original entry on oeis.org
1, 2, 4, 8, 45, 248, 1032, 3524, 13173, 54274, 228712, 917992, 3608665, 14286188, 57438652, 231343468, 926921081, 3700936774, 14793198332, 59241396140, 237333611629, 950127617692, 3801974385964, 15215432779936, 60907523900693, 243826775063490, 976008753961184
Offset: 0
A233294
Number of tilings of a 5 X 5 X n box using 5n bricks of shape 5 X 1 X 1.
Original entry on oeis.org
1, 2, 4, 8, 16, 93, 668, 3440, 13728, 46252, 172577, 739002, 3417464, 15550336, 65956764, 271247405, 1119519052, 4726308568, 20348072952, 87598217268, 373660404281, 1581318625634, 6680851858676, 28326586367464, 120536842633616, 513461699313993
Offset: 0
A237355
The number of tilings of the 3 X 4 X n room by 1 X 1 X 3 boxes.
Original entry on oeis.org
1, 3, 9, 92, 749, 4430, 30076, 217579, 1479055, 10046609, 69575902, 479035195, 3284657308, 22593041544, 155444686265, 1068352050847, 7344626541715, 50504764148658, 347234420131143, 2387280989007848, 16413850076764282, 112852648679477233, 775901649656851817
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], eq. (41).
- Index entries for linear recurrences with constant coefficients, signature (5, -1, 176, -323, -293, -10064, 1074, 7860, 272389, 183389, -59839, -4323330, -4517295, -105217, 44954256, 50928278, 5385773, -322607030, -339177827, -33326860, 1656296393, 1420714989, 41410295, -6265092815, -3679914785, 385369833, 17881094620, 4934247701, -1839198593, -39629953212, 2139678101, 2160878871, 70543105470, -27232379880, 6729477185, -104511366128, 71881449601, -32366552001, 132185701967, -119917584642, 67890453774, -142211822794, 144862794083, -91273082294, 126560496081, -132197432121, 86012823396, -90553404712, 92190746241, -59232895357, 51135748066, -49378215194, 30858791790, -22568613842, 20609808196, -12491943945, 7780358999, -6816233581, 3979624295, -2091442392, 1795023861, -997380768, 436930703, -375021274, 196601781, -73736037, 60815785, -31180618, 10961366, -7072305, 4209081, -1578469, 559851, -506788, 211745, -55563, 36708, -12778, 12700, -1278, 130, -1761, -85, 65, 65, -33, 11, 7, 0, -1).
-
A237355 := proc(n)
p :=
-(-1 +3396185*z^268 +126*z^12 -1276*z^28 +5*z^8 +
5283231061*z^124-1577588*z^52 -13645425693*z^152 +
144704015*z^244 -455*z^20 +13238456*z^260 +31819046103*z
^156 -z^320 +25108196325*z^148 -93044*z^44 -2901338989*z
^128 -10*z^336 -2163597596*z^216 +10067*z^32 -29481842170
*z^168 -27774785437*z^144 +2*z^4 -4*z^340 -18745905736
*z^176 +7299716699*z^140 +21*z^332 -501*z^312 +
32101048863*z^172 -71881307*z^76 +153863*z^36 +13993826*z
^64 +35536*z^292 +10372*z^300 -21028*z^296 -28*z^324
+21886734767*z^180 +2407716*z^68 +91622*z^40 -23376175*z
^80 -24005339291*z^184 +100677112*z^92 -7169*z^304 +1184*
z^316 +222741*z^56 -192795426*z^100 +5270172488*z^108 -
57*z^328 +25361870*z^252 -4094967*z^264 +943065389*z^
116 +19724145370*z^132 -32733186254*z^160 +18663190295*z^
164 +561417344*z^84 -1224595901*z^224 +14015301065*z^188 -
2024669*z^272 -11369197887*z^120 +337006779*z^236 -
990719131*z^112 -25766687*z^256 -6333*z^24 +207060338*z^
88 +19722918*z^60 -123289650*z^72 -73800398*z^248 +651316
*z^276 -309189319*z^104 -93*z^16 -14025522915*z^136 -
2171925*z^48 +13808940292*z^196 +671*z^308 +2217864262*z
^220 -634809849*z^232 +617029016*z^228 +259296*z^284 -
7967920024*z^200 -6205639852*z^208 +3519281640*z^212 +
5961180966*z^204 +z^348 -12884456696*z^192 -1943914891*z^
96 -105001*z^288 -138606683*z^240 -319172*z^280) ;
p := algsubs(z^4=x,p) ;
q :=
1-
60815785*z^268 -176*z^12 -1074*z^28 +z^8 -2139678101*z
^124 +4517295*z^52 +32366552001*z^152 -1795023861*z^244 +
293*z^20 -196601781*z^260 -132185701967*z^156 +1278*z^
320 -71881449601*z^148 +59839*z^44 -2160878871*z^128 -65*
z^336 +22568613842*z^216 -7860*z^32 +142211822794*z^168 +
104511366128*z^144 -5*z^4 -65*z^340 +91273082294*z^176
-6729477185*z^140 +85*z^332 +12778*z^312 -144862794083*z
^172 +339177827*z^76 -272389*z^36 -50928278*z^64 -559851*
z^292 -211745*z^300 +506788*z^296 -130*z^324 -
126560496081*z^180 -5385773*z^68 -183389*z^40 +33326860*z
^80 +132197432121*z^184 -41410295*z^92 +55563*z^304 -
12700*z^316 +105217*z^56 +3679914785*z^100 -17881094620*z
^108 +1761*z^328 -436930703*z^252 +z^360 +73736037*z^
264 +1839198593*z^116 -70543105470*z^132 +119917584642*z^
160 -67890453774*z^164 -1656296393*z^84 +12491943945*z^224
-86012823396*z^188 +31180618*z^272 -7*z^352 +39629953212*
z^120 -3979624295*z^236 -4934247701*z^112 +375021274*z^
256 +10064*z^24 -1420714989*z^88 -44954256*z^60 +322607030
*z^72 +997380768*z^248 -10961366*z^276 -385369833*z^104
+323*z^16 +27232379880*z^136 +4323330*z^48 -92190746241*
z^196 -36708*z^308 -20609808196*z^220 +6816233581*z^232 -
7780358999*z^228 -4209081*z^284 +59232895357*z^200 +
49378215194*z^208 -30858791790*z^212 -51135748066*z^204 -11
*z^348 +90553404712*z^192 +6265092815*z^96 +1578469*z^
288 +33*z^344 +2091442392*z^240 +7072305*z^280 ;
q := algsubs(z^4=x,q) ;
coeftayl(p/q,x=0,n) ;
end proc:
seq(A237355(n),n=0..20) ;
A273474
Number of tilings of a 3 X 5 X n box using 5n bricks of shape 3 X 1 X 1.
Original entry on oeis.org
1, 4, 16, 320, 4430, 40872, 463106, 5675188, 63422950, 710698093, 8200538232, 93691594514, 1063586983374, 12137123569004, 138570852491100, 1579149122960061, 18003479738145524, 205351456145093852, 2341614891431192875, 26699543185422994944, 304468247045695911612
Offset: 0
Showing 1-5 of 5 results.
Comments