A233289
Number of tilings of a 3 X 3 X n box using 3n bricks of shape 3 X 1 X 1.
Original entry on oeis.org
1, 2, 4, 21, 92, 320, 1213, 4822, 18556, 70929, 273808, 1057020, 4069737, 15676666, 60424640, 232846801, 897164316, 3457096532, 13321674833, 51332757274, 197801848744, 762200458321, 2937024077340, 11317358546188, 43609682555721, 168043191679374
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], 2014; eq. (40).
- Wikipedia, Jenga
- Index entries for linear recurrences with constant coefficients, signature (3,0,13,2,-11,-7,4,-3,1,-1)
-
gf:= (x^7-x^6+x^5-x^4+4*x^3+2*x^2+x-1)/(-x^10+x^9
-3*x^8+4*x^7-7*x^6-11*x^5+2*x^4+13*x^3+3*x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
A237355
The number of tilings of the 3 X 4 X n room by 1 X 1 X 3 boxes.
Original entry on oeis.org
1, 3, 9, 92, 749, 4430, 30076, 217579, 1479055, 10046609, 69575902, 479035195, 3284657308, 22593041544, 155444686265, 1068352050847, 7344626541715, 50504764148658, 347234420131143, 2387280989007848, 16413850076764282, 112852648679477233, 775901649656851817
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], eq. (41).
- Index entries for linear recurrences with constant coefficients, signature (5, -1, 176, -323, -293, -10064, 1074, 7860, 272389, 183389, -59839, -4323330, -4517295, -105217, 44954256, 50928278, 5385773, -322607030, -339177827, -33326860, 1656296393, 1420714989, 41410295, -6265092815, -3679914785, 385369833, 17881094620, 4934247701, -1839198593, -39629953212, 2139678101, 2160878871, 70543105470, -27232379880, 6729477185, -104511366128, 71881449601, -32366552001, 132185701967, -119917584642, 67890453774, -142211822794, 144862794083, -91273082294, 126560496081, -132197432121, 86012823396, -90553404712, 92190746241, -59232895357, 51135748066, -49378215194, 30858791790, -22568613842, 20609808196, -12491943945, 7780358999, -6816233581, 3979624295, -2091442392, 1795023861, -997380768, 436930703, -375021274, 196601781, -73736037, 60815785, -31180618, 10961366, -7072305, 4209081, -1578469, 559851, -506788, 211745, -55563, 36708, -12778, 12700, -1278, 130, -1761, -85, 65, 65, -33, 11, 7, 0, -1).
-
A237355 := proc(n)
p :=
-(-1 +3396185*z^268 +126*z^12 -1276*z^28 +5*z^8 +
5283231061*z^124-1577588*z^52 -13645425693*z^152 +
144704015*z^244 -455*z^20 +13238456*z^260 +31819046103*z
^156 -z^320 +25108196325*z^148 -93044*z^44 -2901338989*z
^128 -10*z^336 -2163597596*z^216 +10067*z^32 -29481842170
*z^168 -27774785437*z^144 +2*z^4 -4*z^340 -18745905736
*z^176 +7299716699*z^140 +21*z^332 -501*z^312 +
32101048863*z^172 -71881307*z^76 +153863*z^36 +13993826*z
^64 +35536*z^292 +10372*z^300 -21028*z^296 -28*z^324
+21886734767*z^180 +2407716*z^68 +91622*z^40 -23376175*z
^80 -24005339291*z^184 +100677112*z^92 -7169*z^304 +1184*
z^316 +222741*z^56 -192795426*z^100 +5270172488*z^108 -
57*z^328 +25361870*z^252 -4094967*z^264 +943065389*z^
116 +19724145370*z^132 -32733186254*z^160 +18663190295*z^
164 +561417344*z^84 -1224595901*z^224 +14015301065*z^188 -
2024669*z^272 -11369197887*z^120 +337006779*z^236 -
990719131*z^112 -25766687*z^256 -6333*z^24 +207060338*z^
88 +19722918*z^60 -123289650*z^72 -73800398*z^248 +651316
*z^276 -309189319*z^104 -93*z^16 -14025522915*z^136 -
2171925*z^48 +13808940292*z^196 +671*z^308 +2217864262*z
^220 -634809849*z^232 +617029016*z^228 +259296*z^284 -
7967920024*z^200 -6205639852*z^208 +3519281640*z^212 +
5961180966*z^204 +z^348 -12884456696*z^192 -1943914891*z^
96 -105001*z^288 -138606683*z^240 -319172*z^280) ;
p := algsubs(z^4=x,p) ;
q :=
1-
60815785*z^268 -176*z^12 -1074*z^28 +z^8 -2139678101*z
^124 +4517295*z^52 +32366552001*z^152 -1795023861*z^244 +
293*z^20 -196601781*z^260 -132185701967*z^156 +1278*z^
320 -71881449601*z^148 +59839*z^44 -2160878871*z^128 -65*
z^336 +22568613842*z^216 -7860*z^32 +142211822794*z^168 +
104511366128*z^144 -5*z^4 -65*z^340 +91273082294*z^176
-6729477185*z^140 +85*z^332 +12778*z^312 -144862794083*z
^172 +339177827*z^76 -272389*z^36 -50928278*z^64 -559851*
z^292 -211745*z^300 +506788*z^296 -130*z^324 -
126560496081*z^180 -5385773*z^68 -183389*z^40 +33326860*z
^80 +132197432121*z^184 -41410295*z^92 +55563*z^304 -
12700*z^316 +105217*z^56 +3679914785*z^100 -17881094620*z
^108 +1761*z^328 -436930703*z^252 +z^360 +73736037*z^
264 +1839198593*z^116 -70543105470*z^132 +119917584642*z^
160 -67890453774*z^164 -1656296393*z^84 +12491943945*z^224
-86012823396*z^188 +31180618*z^272 -7*z^352 +39629953212*
z^120 -3979624295*z^236 -4934247701*z^112 +375021274*z^
256 +10064*z^24 -1420714989*z^88 -44954256*z^60 +322607030
*z^72 +997380768*z^248 -10961366*z^276 -385369833*z^104
+323*z^16 +27232379880*z^136 +4323330*z^48 -92190746241*
z^196 -36708*z^308 -20609808196*z^220 +6816233581*z^232 -
7780358999*z^228 -4209081*z^284 +59232895357*z^200 +
49378215194*z^208 -30858791790*z^212 -51135748066*z^204 -11
*z^348 +90553404712*z^192 +6265092815*z^96 +1578469*z^
288 +33*z^344 +2091442392*z^240 +7072305*z^280 ;
q := algsubs(z^4=x,q) ;
coeftayl(p/q,x=0,n) ;
end proc:
seq(A237355(n),n=0..20) ;
Showing 1-2 of 2 results.
Comments