cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233317 Integer areas A of the integer-sided triangles such that the inradius and the radius of the three excircles are perfect squares.

Original entry on oeis.org

108, 1728, 8748, 12348, 27648, 67500, 139968, 197568, 259308, 442368, 707472, 708588, 1000188, 1080000, 1581228, 2239488, 3084588, 3161088, 4148928, 5467500, 7077888, 7717500, 9020268, 11319552, 11337408, 14074668, 16003008, 17280000, 21003948, 25299648
Offset: 1

Views

Author

Michel Lagneau, Dec 07 2013

Keywords

Comments

Subset of A185210.
A = sqrt(s*(p-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
The inradius is r = A/s;
The radii of the three excircles are r1 = 2*A/(-a+b+c); x2 = 2*A*b/(a-b+c); x3 = 2*A*c/(a+b-c).
The areas A of the primitive triangles of sides (a,b,c) are 108, 12348, ...
The areas of the nonprimitive triangles of sides (a*p^2, b*p^2, c*p^2) are in the sequence with the value A*p^4.
The following table gives the first values (A, a, b, c, r, r1, r2, r3) where A is the area of the triangle, a, b, c the integer sides, r, r1, r2 and r3 are respectively the length of the inradius and the radius of the three excircles.
+--------+-----+------+------+------+------+------+------+
| A | a | b | c | r | r1 | r2 | r3 |
+--------+-----+------+------+------+------+------+------+
| 108 | 15 | 15 | 24 | 2^2 | 3^2 | 3^2 | 6^2 |
| 1728 | 60 | 60 | 96 | 4^2 | 6^2 | 6^2 | 12^2 |
| 8748 | 135 | 135 | 216 | 6^2 | 9^2 | 9^2 | 18^2 |
| 12348 | 91 | 280 | 315 | 6^2 | 7^2 | 14^2 | 21^2 |
| 27648 | 240 | 240 | 384 | 8^2 | 12^2 | 12^2 | 24^2 |
| 67500 | 375 | 375 | 600 | 10^2 | 15^2 | 15^2 | 30^2 |
| 139968 | 540 | 540 | 864 | 12^2 | 18^2 | 18^2 | 36^2 |
| 197568 | 364 | 1120 | 1260 | 12^2 | 14^2 | 28^2 | 42^2 |
| 259308 | 735 | 735 | 1176 | 14^2 | 21^2 | 21^2 | 42^2 |
+--------+-----+------+------+------+------+------+------+

Crossrefs

Cf. A185210.

Programs

  • Mathematica
    nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[area2>0&& IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]] && IntegerQ[Sqrt[2*Sqrt[area2]/(-a+b+c)]] && IntegerQ[Sqrt[2*Sqrt[area2]/(a-b+c)]] && IntegerQ[Sqrt[2*Sqrt[area2]/(a+b-c)]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]