A233325 a(n) = (2*6^(n+1) - 7) / 5.
1, 13, 85, 517, 3109, 18661, 111973, 671845, 4031077, 24186469, 145118821, 870712933, 5224277605, 31345665637, 188073993829, 1128443962981, 6770663777893, 40623982667365, 243743896004197, 1462463376025189, 8774780256151141, 52648681536906853
Offset: 0
Examples
a(0) = 1; a(1) = 6 + 1 + 6 = 13; a(2) = 36 + 6 + 1 + 6 + 36 = 85; a(3) = 216 + 36 + 6 + 1 + 6 + 36 + 216 = 517; etc.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (7,-6).
Crossrefs
Cf. A026567.
Programs
-
Magma
[(2*6^(n+1) - 7) / 5: n in [0..30]]; // Vincenzo Librandi, Feb 25 2014
-
Mathematica
Table[(2 6^(n + 1) - 7)/5, {n, 0, 20}] (* Vincenzo Librandi, Feb 25 2014 *)
Formula
G.f.: (1+6*x)/((1-x)*(1-6*x)).
a(n) = 7*a(n-1) - 6*a(n-2) for n>1, a(0)=1, a(1)=13.
a(n) = 6*a(n-1) + 7 for n>0, a(0)=1.
a(n) = A026567(2*n). - Philippe Deléham, Feb 24 2014
Comments