cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A026567 a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.

Original entry on oeis.org

1, 4, 13, 31, 85, 193, 517, 1165, 3109, 6997, 18661, 41989, 111973, 251941, 671845, 1511653, 4031077, 9069925, 24186469, 54419557, 145118821, 326517349, 870712933, 1959104101, 5224277605, 11754624613, 31345665637, 70527747685
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Truncate((2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) -14)/10): n in [0..40]]; // G. C. Greubel, Dec 19 2021
    
  • Mathematica
    CoefficientList[Series[(1 +3x +3x^2)/((1-x)(1-6x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
    LinearRecurrence[{1,6,-6},{1,4,13},30] (* Harvey P. Dale, Aug 23 2014 *)
  • Sage
    [(1/10)*(2*(1+(-1)^n)*6^((n+2)/2) +27*(1-(-1)^n)*6^((n-1)/2) -14) for n in (0..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = Sum_{i=0..2*n} Sum_{j=0..i} A026552(i, j).
G.f.: (1+3*x+3*x^2)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = 6*a(n-2) + 7. - Philippe Deléham, Feb 24 2014
a(2*k) = A233325(k). - Philippe Deléham, Feb 24 2014
From Colin Barker, Nov 25 2016: (Start)
a(n) = (2^(n/2+2) * 3^(n/2+1) - 7)/5 for n even.
a(n) = (2^((n-1)/2) * 3^((n+5)/2) - 7)/5 for n odd. (End)
a(n) = (1/10)*(2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) - 14). - G. C. Greubel, Dec 19 2021

A238303 Triangle T(n,k), 0<=k<=n, read by rows given by T(n,0) = 1, T(n,k) = 2 if k>0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Comments

Row sums are A005408(n).
Diagonals sums are A109613(n).
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000012(n), A005408(n), A036563(n+2), A058481(n+1), A083584(n), A137410(n), A233325(n), A233326(n), A233328(n), A211866(n+1), A165402(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A151575(n), A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A005408(n), A016813(n), A017077(n) for x = 0, 1, 2, 3 respectively.
Sum_{k=0..n} k*T(n,k) = A002378(n).
Sum_{k=0..n} A000045(k)*T(n,k) = A019274(n+2).
Sum_{k=0..n} A000142(k)*T(n,k) = A066237(n+1).

Examples

			Triangle begins:
1;
1, 2;
1, 2, 2;
1, 2, 2, 2;
1, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
...
		

Crossrefs

Cf. Diagonals: A040000.
Cf. Columns: A000012, A007395.
First differences of A001614.

Programs

Formula

T(n,0) = A000012(n) = 1, T(n+k,k) = A007395(n) = 2 for k>0.

Extensions

Data section extended to a(104) by Antti Karttunen, Jan 19 2025

A238339 Square number array read by ascending antidiagonals: T(1,k) = 2*k + 1, and T(n,k) = (2*n^(k+1)-n-1)/(n-1) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 29, 9, 1, 1, 11, 41, 79, 61, 11, 1, 1, 13, 61, 169, 241, 125, 13, 1, 1, 15, 85, 311, 681, 727, 253, 15, 1, 1, 17, 113, 517, 1561, 2729, 2185, 509, 17, 1, 1, 19, 145, 799, 3109, 7811, 10921, 6559, 1021, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Examples

			Square array begins:
1..1...1.....1......1.......1........1........1...
1..3...5.....7......9......11.......13.......15...
1..5..13....29.....61.....125......253......509...
1..7..25....79....241.....727.....2185.....6559...
1..9..41...169....681....2729....10921....43689...
1.11..61...311...1561....7811....39061...195311...
1.13..85...517...3109...18661...111973...671845...
1.15.113...799...5601...39215...274513..1921599...
1.17.145..1169...9361...74897...599185..4793489...
1.19.181..1639..14761..132859..1195741.10761679...
1.21.221..2221..22221..222221..2222221.22222221...
		

Crossrefs

Cf. A238303.

Programs

  • Maple
    T:= proc(n, k); if n=1 then 2*k+1 else (2*n^(k+1)-n-1)/(n-1) fi end:
    seq(seq(T(n-k, k), k=0..n), n=0..10); # Georg Fischer, Oct 14 2023

Formula

T(0,k) = A000012(k) = 1;
T(1,k) = A005408(k) = 2k+1;
T(2,k) = A036563(k+2);
T(3,k) = A058481(k+1);
T(4,k) = A083584(k);
T(5,k) = A137410(k);
T(6,k) = A233325(k);
T(7,k) = A233326(k);
T(8,k) = A233328(k);
T(9,k) = A211866(k+1);
T(10,k) = A165402(k+1);
T(n,0) = A000012(n) = 1;
T(n,1) = A005408(n) = 2*n+1;
T(n,2) = A001844(n) = 2*n^2 + 2*n + 1.

Extensions

Definition amended by Georg Fischer, Oct 14 2023
Showing 1-3 of 3 results.