A026567 a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.
1, 4, 13, 31, 85, 193, 517, 1165, 3109, 6997, 18661, 41989, 111973, 251941, 671845, 1511653, 4031077, 9069925, 24186469, 54419557, 145118821, 326517349, 870712933, 1959104101, 5224277605, 11754624613, 31345665637, 70527747685
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6).
Crossrefs
Programs
-
Magma
[Truncate((2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) -14)/10): n in [0..40]]; // G. C. Greubel, Dec 19 2021
-
Mathematica
CoefficientList[Series[(1 +3x +3x^2)/((1-x)(1-6x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *) LinearRecurrence[{1,6,-6},{1,4,13},30] (* Harvey P. Dale, Aug 23 2014 *)
-
Sage
[(1/10)*(2*(1+(-1)^n)*6^((n+2)/2) +27*(1-(-1)^n)*6^((n-1)/2) -14) for n in (0..40)] # G. C. Greubel, Dec 19 2021
Formula
a(n) = Sum_{i=0..2*n} Sum_{j=0..i} A026552(i, j).
G.f.: (1+3*x+3*x^2)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = 6*a(n-2) + 7. - Philippe Deléham, Feb 24 2014
a(2*k) = A233325(k). - Philippe Deléham, Feb 24 2014
From Colin Barker, Nov 25 2016: (Start)
a(n) = (2^(n/2+2) * 3^(n/2+1) - 7)/5 for n even.
a(n) = (2^((n-1)/2) * 3^((n+5)/2) - 7)/5 for n odd. (End)
a(n) = (1/10)*(2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) - 14). - G. C. Greubel, Dec 19 2021
Comments