A233326 a(n) = (7^(n+1) - 4) / 3.
1, 15, 113, 799, 5601, 39215, 274513, 1921599, 13451201, 94158415, 659108913, 4613762399, 32296336801, 226074357615, 1582520503313, 11077643523199, 77543504662401, 542804532636815, 3799631728457713, 26597422099203999, 186181954694428001
Offset: 0
Examples
a(0) = 1; a(1) = 7 + 1 + 7 = 15; a(2) = 49 + 7 + 1 + 7 + 49 = 113; a(3) = 343 + 49 + 7 + 1 + 7 + 49 + 343 = 799; etc.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (8,-7).
Programs
-
Magma
[(7^(n+1)-4)/3: n in [0..30]]; // Vincenzo Librandi, Feb 25 2014
-
Mathematica
Table[(7^(n + 1) - 4)/3, {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2014 *) LinearRecurrence[{8,-7},{1,15},30] (* Harvey P. Dale, Jul 05 2023 *)
Formula
G.f.: (1+7*x)/((1-x)*(1-7*x)).
a(n) = 8*a(n-1) - 7*a(n-2) for n>1, a(0)=1, a(1)=15.
a(n) = 7*a(n-1) + 8 for n>0, a(0)=1.
Comments