cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233329 Expansion of (1+4*x+x^2)/((1+x)^2*(1-x)^5).

Original entry on oeis.org

1, 7, 21, 51, 102, 186, 310, 490, 735, 1065, 1491, 2037, 2716, 3556, 4572, 5796, 7245, 8955, 10945, 13255, 15906, 18942, 22386, 26286, 30667, 35581, 41055, 47145, 53880, 61320, 69496, 78472, 88281, 98991, 110637, 123291, 136990, 151810, 167790, 185010, 203511
Offset: 0

Views

Author

L. Edson Jeffery, Jan 06 2014

Keywords

Comments

Sequence is related to enumeration of coronas in A233332.
Conjecture: sequence gives column 1 of A233331 (up to an offset).

Crossrefs

Cf. A076454 (bisection, up to an offset), A233330-A233333.

Programs

  • Magma
    [(2*n^4+20*n^3+68*n^2+90*n+37-2*n*(-1)^n-5*(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Nov 17 2014
  • Maple
    A233329:=n->(2*n^4+20*n^3+68*n^2+90*n+37-2*n*(-1)^n-5*(-1)^n)/32: seq(A233329(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2014
  • Mathematica
    CoefficientList[Series[(1 + 4*x + x^2)/((1 + x)^2*(1 - x)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 17 2014 *)
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,7,21,51,102,186,310},50] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n) = (2*n^4+20*n^3+68*n^2+(90-2*(-1)^n)*n)\/32+1 \\ Charles R Greathouse IV, Oct 28 2014
    

Formula

G.f.: (1+4*x+x^2)/((1+x)^2*(1-x)^5).
a(n) = (2*(n^4+10*n^3+34*n^2+(45+(-1)^(n+1))*n)+37+5*(-1)^(n+1))/32.
a(n) = sum_{j=1..n+1} ( sum_{i=1..j+1} floor(i*j/2) ). - Wesley Ivan Hurt, Nov 17 2014