cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233334 a(1) = 1; for n > 1, a(n) is the smallest number > a(n-1) such that a(1) + a(2) + ... + a(n) is a composite number.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Michel Lagneau, Dec 18 2013

Keywords

Comments

{a(n)} = {1, 3, 4, 6, 7} union {9, 10, 11, 12, ...} and the sum s(n) = a(1) + a(2) + ... + a(n) is always composite because s(1) = 1, s(2) = 4, s(3) = 8, s(4) = 14 and for n = 5,6,7,... s(n) = (n-2)*(n+9)/2 = 21, 30, 40, 51, ... = A056115(n) for n >= 3.

Examples

			The third term is 4 because 1+3+4=8 is composite.
		

Crossrefs

Programs

  • Mathematica
    p=1; lst={p}; Do[If[!PrimeQ[p+n], AppendTo[lst, n]; p=p+n], {n, 3, 70}]; lst
    nxt[{c_,a_}]:=Module[{k=a+1},While[!CompositeQ[c+k],k++];{c+k,k}]; NestList[nxt,{1,1},70][[;;,2]] (* Harvey P. Dale, Dec 05 2023 *)

Formula

From Chai Wah Wu, Jan 28 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 7.
G.f.: x*(-x^6 + x^5 - x^4 + x^3 - x^2 + x + 1)/(x - 1)^2. (End)