A233383 Decimal expansion of the absolute value of Sum_{n>=1} (-1)^n*sin(1/n).
5, 5, 0, 7, 9, 6, 8, 4, 8, 1, 3, 3, 9, 2, 9, 4, 7, 5, 5, 1, 0, 0, 6, 6, 9, 5, 7, 4, 3, 5, 1, 1, 8, 4, 1, 4, 3, 9, 6, 1, 7, 6, 8, 0, 8, 9, 0, 0, 5, 3, 7, 6, 6, 5, 7, 1, 5, 8, 8, 6, 9, 6, 8, 7, 6, 6, 1, 8, 3, 1, 0, 6, 2, 9, 0, 8, 6, 3, 0, 4, 5, 6, 2, 1, 2, 0, 2, 4, 6, 8, 1, 4, 6, 4, 4, 9, 5, 0, 0, 3, 9, 9, 7, 3, 3
Offset: 0
Examples
0.550796848133929475510066957...
Links
- oldrinb, Evaluating the infinite series sum_n=1^infty [sin(1/2n)-sin(1/(2n+1))], math.stackexchange, Aug 22 2013
Programs
-
Maple
M := 141 : Digits := 120 : s := sin(1/2/n)-sin(1/(2*n+1)) : add(subs(n=i,s),i=1..M) : pre := evalf(%) : zetaM := proc(s,M) local n ; Zeta(s)-add(1/n^s,n=1..M) ; evalf(%) ; end proc: for dd from 75 to 90 by 5 do subs(n=1/eps,s) ; taylor(%,eps=0,dd+1) ; t := gfun[seriestolist](%,'ogf') ; add( op(j,t)*zetaM(j-1,M),j=3..nops(t)) ; x := pre+% ; print(x) ; end do: # now sum_{n>=1} (-1)^n*sin(1/n) = -0.5570986. x-sin(1.0) ;
-
Mathematica
digits = 105; NSum[(-1)^n*Sin[1/n], {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 24 2014 *)
Comments