cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233383 Decimal expansion of the absolute value of Sum_{n>=1} (-1)^n*sin(1/n).

Original entry on oeis.org

5, 5, 0, 7, 9, 6, 8, 4, 8, 1, 3, 3, 9, 2, 9, 4, 7, 5, 5, 1, 0, 0, 6, 6, 9, 5, 7, 4, 3, 5, 1, 1, 8, 4, 1, 4, 3, 9, 6, 1, 7, 6, 8, 0, 8, 9, 0, 0, 5, 3, 7, 6, 6, 5, 7, 1, 5, 8, 8, 6, 9, 6, 8, 7, 6, 6, 1, 8, 3, 1, 0, 6, 2, 9, 0, 8, 6, 3, 0, 4, 5, 6, 2, 1, 2, 0, 2, 4, 6, 8, 1, 4, 6, 4, 4, 9, 5, 0, 0, 3, 9, 9, 7, 3, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 08 2013

Keywords

Comments

If the contribution of the first term, -sin(1) = -A049469, is omitted, the constant becomes Sum_{n>=1} (sin(1/(2n)) - sin(1/(2n+1))) = 0.29067413667396703114243536419518058522...

Examples

			0.550796848133929475510066957...
		

Programs

  • Maple
    M := 141 :
    Digits := 120 :
    s := sin(1/2/n)-sin(1/(2*n+1)) :
    add(subs(n=i,s),i=1..M) :
    pre := evalf(%) :
    zetaM := proc(s,M)
        local n ;
        Zeta(s)-add(1/n^s,n=1..M) ;
        evalf(%) ;
    end proc:
    for dd from 75 to 90 by 5 do
        subs(n=1/eps,s) ;
        taylor(%,eps=0,dd+1) ;
        t := gfun[seriestolist](%,'ogf') ;
        add( op(j,t)*zetaM(j-1,M),j=3..nops(t)) ;
        x := pre+% ;
        print(x) ;
    end do:
    # now sum_{n>=1} (-1)^n*sin(1/n) = -0.5570986.
    x-sin(1.0) ;
  • Mathematica
    digits = 105; NSum[(-1)^n*Sin[1/n], {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 24 2014 *)