A336405 Decimal expansion of Sum_{n>=1} log(n*sin(1/n)) (negated).
2, 8, 0, 5, 5, 6, 3, 3, 6, 2, 2, 9, 1, 5, 5, 0, 7, 9, 6, 0, 2, 0, 3, 9, 6, 8, 0, 9, 3, 9, 1, 9, 8, 3, 6, 2, 1, 7, 4, 5, 0, 2, 8, 2, 9, 4, 5, 9, 7, 1, 5, 1, 5, 5, 9, 0, 4, 7, 7, 3, 8, 5, 3, 7, 9, 5, 1, 5, 6, 7, 7, 2, 1, 0, 9, 9, 9, 1, 1, 6, 9, 0, 7, 4, 2, 7, 7
Offset: 0
Examples
-0.28055633622915507960203968093919836217450282945971...
Programs
-
Maple
evalf(sum(log(n*sin(1/n)),n=1..infinity),50);
-
PARI
sumpos(n=1, log(n*sin(1/n))) \\ Michel Marcus, Jul 20 2020
Formula
Equals Sum_{n>=1} log(n*sin(1/n)).
Equals log(A295219).
From Amiram Eldar, Jul 30 2023: (Start)
Equals Sum_{k>=1} 2^(2*k-1)*(-1)^k*B(2*k)*zeta(2*k)/(k*(2*k)!), where B(k) is the k-th Bernoulli number.
Equals -Sum_{k>=1} zeta(2*k)^2/(k*Pi^(2*k)). (End)
Extensions
More terms from Jinyuan Wang, Jul 21 2020
Comments