cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336405 Decimal expansion of Sum_{n>=1} log(n*sin(1/n)) (negated).

Original entry on oeis.org

2, 8, 0, 5, 5, 6, 3, 3, 6, 2, 2, 9, 1, 5, 5, 0, 7, 9, 6, 0, 2, 0, 3, 9, 6, 8, 0, 9, 3, 9, 1, 9, 8, 3, 6, 2, 1, 7, 4, 5, 0, 2, 8, 2, 9, 4, 5, 9, 7, 1, 5, 1, 5, 5, 9, 0, 4, 7, 7, 3, 8, 5, 3, 7, 9, 5, 1, 5, 6, 7, 7, 2, 1, 0, 9, 9, 9, 1, 1, 6, 9, 0, 7, 4, 2, 7, 7
Offset: 0

Views

Author

Bernard Schott, Jul 20 2020

Keywords

Comments

As v(n) = log(n*sin(1/n)) ~ -1/(6*n^2) when n -> oo, this series is convergent (zeta(2)/6 ~ 0.2741556778...).

Examples

			-0.28055633622915507960203968093919836217450282945971...
		

Crossrefs

Programs

  • Maple
    evalf(sum(log(n*sin(1/n)),n=1..infinity),50);
  • PARI
    sumpos(n=1, log(n*sin(1/n))) \\ Michel Marcus, Jul 20 2020

Formula

Equals Sum_{n>=1} log(n*sin(1/n)).
Equals log(A295219).
From Amiram Eldar, Jul 30 2023: (Start)
Equals Sum_{k>=1} 2^(2*k-1)*(-1)^k*B(2*k)*zeta(2*k)/(k*(2*k)!), where B(k) is the k-th Bernoulli number.
Equals -Sum_{k>=1} zeta(2*k)^2/(k*Pi^(2*k)). (End)

Extensions

More terms from Jinyuan Wang, Jul 21 2020

A362752 Decimal expansion of Sum_{k>=1} (1/k - sin(1/k)).

Original entry on oeis.org

1, 9, 1, 8, 9, 9, 0, 8, 5, 5, 0, 6, 2, 6, 4, 8, 2, 7, 9, 8, 1, 1, 4, 6, 0, 7, 7, 2, 2, 6, 4, 3, 9, 8, 4, 3, 4, 0, 4, 3, 0, 9, 1, 0, 2, 3, 7, 7, 5, 5, 0, 9, 5, 3, 9, 1, 1, 7, 2, 1, 2, 9, 8, 0, 9, 0, 7, 7, 4, 8, 0, 1, 2, 3, 5, 1, 3, 4, 0, 8, 1, 2, 1, 7, 0, 4, 9, 4, 4, 0, 2, 5, 4, 2, 8, 1, 6, 2, 6, 8, 1, 1, 7, 8, 5
Offset: 0

Views

Author

Amiram Eldar, May 02 2023

Keywords

Examples

			0.19189908550626482798114607722643984340430910237755...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/k - sin(1/k), k = 1..infinity), 120);
  • PARI
    sumalt(k = 1, (-1)^(k+1) * zeta(2*k+1)/(2*k+1)!)

Formula

Equals Sum_{k>=1} (-1)^(k+1)*zeta(2*k+1)/(2*k+1)!.

A362753 Decimal expansion of Sum_{k>=1} sin(1/k)/k.

Original entry on oeis.org

1, 4, 7, 2, 8, 2, 8, 2, 3, 1, 9, 5, 6, 1, 8, 5, 2, 9, 6, 2, 9, 4, 9, 4, 7, 3, 8, 3, 8, 2, 3, 1, 4, 5, 8, 2, 5, 3, 2, 3, 8, 6, 5, 9, 2, 7, 8, 7, 9, 3, 0, 7, 1, 7, 2, 8, 1, 9, 2, 2, 9, 3, 7, 5, 7, 2, 2, 4, 3, 3, 9, 0, 6, 1, 0, 1, 1, 5, 7, 2, 2, 0, 8, 1, 5, 1, 3, 5, 5, 0, 7, 0, 4, 1, 5, 0, 6, 8, 9, 1, 3, 3, 2, 7, 5
Offset: 1

Views

Author

Amiram Eldar, May 02 2023

Keywords

Comments

The value of the Hardy-Littlewood function H(x) = Sum_{k>=1} sin(x/k)/k at x = 1 (Hardy and Littlewood, 1936; Gautschi, 2004).

Examples

			1.47282823195618529629494738382314582532386592787930...
		

References

  • Walter Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, 2004. See Example 3.64, pp. 242-245.

Crossrefs

Programs

  • Maple
    evalf(sum(sin(1/k)/k, k = 1 .. infinity), 120);
  • PARI
    sumpos(k = 1, sin(1/k)/k)

Formula

Equals Sum_{k>=1} (-1)^(k+1)*zeta(2*k)/(2*k-1)!.
Showing 1-3 of 3 results.