cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233418 a(n) is the smallest number k > 0 such that k^2+1, (k+1)^2+1,...,(k+n)^2+1 are composite numbers.

Original entry on oeis.org

1, 3, 8, 7, 32, 31, 30, 29, 28, 27, 44, 43, 42, 41, 96, 95, 188, 187, 186, 185, 364, 363, 362, 361, 360, 359, 358, 357, 356, 355, 354, 353, 352, 351, 502, 501, 500, 499, 498, 497, 3396, 3395, 3394, 3393, 3392, 3391, 3578, 3577, 3576, 3575, 3574, 3573, 3572
Offset: 0

Views

Author

Michel Lagneau, Dec 09 2013

Keywords

Examples

			a(0) = 1 because  1^2+1 is prime.
a(1) = 3 because  3^2+1 is composite, but 4^2+1 is prime.
a(2) = 8 because  8^2+1, 9^2+1 are composites, but 10^2+1 is prime.
a(3) = 7 because  7^2+1, 8^2+1 and 9^2+1 are composites, but 10^2+1 is prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 60 do: ii:=0:for k from 1 to 10^8 while(ii=0) do:i:=0:for m from 0 to n while(type((k+m)^2+1,prime)=false ) do :i:=i+1:od:if i=n then ii:=1: printf(`%d, `,k):else fi:od:od:
  • Mathematica
    nn = 50; t = Table[0, {nn}]; cnt = 0; k = 0; While[cnt < nn, k++; i = 0; While[! PrimeQ[(k + i)^2 + 1], i++]; If[i < nn && t[[i + 1]] == 0, t[[i + 1]] = k; cnt++]]; t (* T. D. Noe, Dec 10 2013 *)