A233427 Number A(n,k) of tilings of a k X n rectangle using pentominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 5, 0, 0, 5, 0, 1, 1, 0, 0, 56, 0, 56, 0, 0, 1, 1, 0, 0, 0, 501, 501, 0, 0, 0, 1, 1, 0, 0, 0, 0, 4006, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 27950, 27950, 0, 0, 0, 1, 1, 1, 0, 45, 0, 0, 214689, 0, 214689, 0, 0, 45, 0, 1
Offset: 0
Examples
A(5,2) = A(2,5) = 5: ._________. ._________. ._________. ._________. ._________. |_________| | ._____| | | |_____. | | ._| | | |_. | |_________| |_|_______| |_______|_| |___|_____| |_____|___|. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 0, 0, 0, 1, 0, ... 1, 0, 0, 0, 0, 5, 0, ... 1, 0, 0, 0, 0, 56, 0, ... 1, 0, 0, 0, 0, 501, 0, ... 1, 1, 5, 56, 501, 4006, 27950, ... 1, 0, 0, 0, 0, 27950, 0, ... 1, 0, 0, 0, 0, 214689, 0, ... 1, 0, 0, 0, 0, 1696781, 0, ... 1, 0, 0, 0, 0, 13205354, 0, ... 1, 1, 45, 7670, 890989, 101698212, 7845888732, ... ...
Links
- Liang Kai, Antidiagonals n = 0..26, flattened (Antidiagonals n = 0..17 from Alois P. Heinz)
- R. S. Harris, Counting Polyomino Tilings
- Liang Kai, Solving tiling enumeration problems by tensor network contractions, arXiv:2503.17698 [math.CO], 2025.
- Wikipedia, Pentomino
Crossrefs
Formula
A(n,k) = 0 <=> n*k mod 5 > 0.