A233436 a(n) = Sum_{k=0..n-1} [x^k] A(x)^(n-1) for n>=1 with a(0)=1, where g.f. A(x) = Sum_{n>=0} a(n)*x^n.
1, 1, 2, 8, 50, 424, 4472, 55760, 797022, 12801296, 227829866, 4446822688, 94422531876, 2166975912496, 53457972027254, 1410960809766320, 39680975219789210, 1184783226216138592, 37434788449030871076, 1248022160663960432264, 43785432805297352937954, 1612690422384099635004264
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 50*x^4 + 424*x^5 + 4472*x^6 + 55760*x^7 +... ILLUSTRATION OF INITIAL TERMS. If we form an array of coefficients of x^k in A(x)^n, n>=0, like so: A^0 = [1],0, 0, 0, 0, 0, 0, 0, 0, ...; A^1 = [1, 1], 2, 8, 50, 424, 4472, 55760, 797022, ...; A^2 = [1, 2, 5], 20, 120, 980, 10056, 122960, 1732736, ...; A^3 = [1, 3, 9, 37], 216, 1704, 17006, 203760, 2829030, ...; A^4 = [1, 4, 14, 60, 345], 2640, 25632, 300744, 4111472, ...; A^5 = [1, 5, 20, 90, 515, 3841], 36310, 417000, 5609960, ...; A^6 = [1, 6, 27, 128, 735, 5370, 49493], 556212, 7359480, ...; A^7 = [1, 7, 35, 175, 1015, 7301, 65723, 722765], 9400986, ...; A^8 = [1, 8, 44, 232, 1366, 9720, 85644, 921864, 11782417], ...; ... then a(n) equals the sum of the coefficients of x^k, k=0..n-1, in A(x)^(n-1) (shown above in brackets) for n>=1: a(1) = 1 = 1; a(2) = 1 + 1 = 2; a(3) = 1 + 2 + 5 = 8; a(4) = 1 + 3 + 9 + 37 = 50; a(5) = 1 + 4 + 14 + 60 + 345 = 424; a(6) = 1 + 5 + 20 + 90 + 515 + 3841 = 4472; a(7) = 1 + 6 + 27 + 128 + 735 + 5370 + 49493 = 55760; a(8) = 1 + 7 + 35 + 175 + 1015 + 7301 + 65723 + 722765 = 797022; ... Also, from a diagonal in the above table we can obtain the coefficients: [1/1, 2/2, 9/3, 60/4, 515/5, 5370/6, 65723/7, 921864/8, ...] to form the power series G(x) = 1 + x + 3*x^2 + 15*x^3 + 103*x^4 + 895*x^5 + 9389*x^6 + 115233*x^7 +... that satisfies: A(x) = G(x/A(x)) = 1 + x*(G(x) + x*G'(x))/(G(x) - x*G(x)^2).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..150
Programs
-
PARI
{a(n)=local(A=1+x);if(n==0,1,for(i=1,n, A=1+sum(k=1,n-1,sum(j=0,k-1,polcoeff(A^(k-1)+x*O(x^j),j))*x^k)+x*O(x^n)); sum(j=0,n-1,polcoeff(A^(n-1)+x*O(x^j),j)))} for(n=0,20,print1(a(n),", "))
Formula
Given g.f. A(x), let G(x) = A(x*G(x)), then A(x) = G(x/A(x)) = 1 + x*(G(x) + x*G'(x)) / (G(x) - x*G(x)^2).
a(n)/a(n-1) ~ n/LambertW(1). - Vaclav Kotesovec, Sep 14 2024