cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233482 Numbers for which the number of divisors and the sum of the distinct prime divisors are both perfect.

Original entry on oeis.org

575, 2057, 2645, 3179, 4416, 8512, 12275, 33534, 94272, 138431, 203075, 218176, 392747, 715878, 918592, 982157, 991841, 1082176, 1205405, 1244387, 1559616, 1690432, 1966912, 2344079, 2464576, 2982976, 3386176, 3452992, 3625792, 3821632, 3867712, 3900497
Offset: 1

Views

Author

Michel Lagneau, Dec 11 2013

Keywords

Comments

Numbers n such that A000005(n) and A008472(n) are in the sequence A000396. See the sequence A081357 for the sublime numbers.

Examples

			575 is in the sequence because tau(575) = 6 and sopf(575) = 28,
4416 is in the sequence because tau(4416) = 28 and sopf(4416) = 28,
12275 is in the sequence because tau(12275) = 6 and sopf(12275) = 496,
203075 is in the sequence because tau(203075) = 6 and sopf(203075) = 8128.
		

Crossrefs

Programs

  • Maple
    with(numtheory): lst:={6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216} :n1:=nops(lst): for n from 1 to 1000000 do :x:=factorset(n):n2:=nops(x): s:=sum('x[i]', 'i'=1..n2):
    ii:=0:for m from 1 to n1 do:if s=lst[m] then ii:=1:else fi:od:jj:=0:for p from 1 to n1 do:if tau(n)=lst[p] then jj:=1:else fi:od:if ii=1 and jj=1 then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range[4*10^6],AllTrue[{DivisorSigma[0,#],Total[FactorInteger[#][[All,1]]]},PerfectNumberQ]&] (* Harvey P. Dale, Aug 11 2021 *)