A233482 Numbers for which the number of divisors and the sum of the distinct prime divisors are both perfect.
575, 2057, 2645, 3179, 4416, 8512, 12275, 33534, 94272, 138431, 203075, 218176, 392747, 715878, 918592, 982157, 991841, 1082176, 1205405, 1244387, 1559616, 1690432, 1966912, 2344079, 2464576, 2982976, 3386176, 3452992, 3625792, 3821632, 3867712, 3900497
Offset: 1
Keywords
Examples
575 is in the sequence because tau(575) = 6 and sopf(575) = 28, 4416 is in the sequence because tau(4416) = 28 and sopf(4416) = 28, 12275 is in the sequence because tau(12275) = 6 and sopf(12275) = 496, 203075 is in the sequence because tau(203075) = 6 and sopf(203075) = 8128.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..333 (terms < 10^11)
Programs
-
Maple
with(numtheory): lst:={6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216} :n1:=nops(lst): for n from 1 to 1000000 do :x:=factorset(n):n2:=nops(x): s:=sum('x[i]', 'i'=1..n2): ii:=0:for m from 1 to n1 do:if s=lst[m] then ii:=1:else fi:od:jj:=0:for p from 1 to n1 do:if tau(n)=lst[p] then jj:=1:else fi:od:if ii=1 and jj=1 then printf(`%d, `,n):else fi:od:
-
Mathematica
Select[Range[4*10^6],AllTrue[{DivisorSigma[0,#],Total[FactorInteger[#][[All,1]]]},PerfectNumberQ]&] (* Harvey P. Dale, Aug 11 2021 *)
Comments