cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233522 Expansion of 1 / (1 - x - x^4 + x^9) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 38, 50, 67, 89, 118, 156, 207, 274, 363, 481, 638, 845, 1119, 1482, 1964, 2602, 3447, 4566, 6049, 8013, 10615, 14062, 18629, 24678, 32691, 43306, 57369, 75998, 100676, 133367, 176674, 234043, 310041, 410717
Offset: 0

Views

Author

Michael Somos, Dec 11 2013

Keywords

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + ...
		

Crossrefs

Cf. A017830.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/( 1-x-x^4+x^9))); // G. C. Greubel, Aug 08 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ If[ n >= 0, 1 / (1 - x - x^4 + x^9), -x^9 / (1 - x^5 - x^8 + x^9)], {x, 0, Abs@n}];
  • PARI
    {a(n) = if( n>=0, polcoeff( 1 / (1 - x - x^4 + x^9) + x * O(x^n), n), polcoeff( -x^9 / (1 - x^5 - x^8 + x^9) + x * O(x^-n), -n))};
    

Formula

a(n) = a(n-1) + a(n-4) - a(n-9) for all n in Z.
a(n) - a(n-1) = A017830(n).
G.f.: 1 / ((1 - x) * (1 + x) * (1 + x^2) * (1 - x - x^5)).