A233522 Expansion of 1 / (1 - x - x^4 + x^9) in powers of x.
1, 1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 38, 50, 67, 89, 118, 156, 207, 274, 363, 481, 638, 845, 1119, 1482, 1964, 2602, 3447, 4566, 6049, 8013, 10615, 14062, 18629, 24678, 32691, 43306, 57369, 75998, 100676, 133367, 176674, 234043, 310041, 410717
Offset: 0
Examples
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,0,0,0,-1).
Crossrefs
Cf. A017830.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/( 1-x-x^4+x^9))); // G. C. Greubel, Aug 08 2018 -
Mathematica
a[ n_] := SeriesCoefficient[ If[ n >= 0, 1 / (1 - x - x^4 + x^9), -x^9 / (1 - x^5 - x^8 + x^9)], {x, 0, Abs@n}];
-
PARI
{a(n) = if( n>=0, polcoeff( 1 / (1 - x - x^4 + x^9) + x * O(x^n), n), polcoeff( -x^9 / (1 - x^5 - x^8 + x^9) + x * O(x^-n), -n))};
Formula
a(n) = a(n-1) + a(n-4) - a(n-9) for all n in Z.
a(n) - a(n-1) = A017830(n).
G.f.: 1 / ((1 - x) * (1 + x) * (1 + x^2) * (1 - x - x^5)).