cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233525 Start with a(1) = 1, a(2) = 1, then a(n)*3^k = a(n+1) + a(n+2), with 3^k the smallest power of 3 (k>0) such that all terms a(n) are positive integers.

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 11, 1, 32, 49, 47, 100, 41, 259, 110, 667, 323, 1678, 1229, 3805, 7256, 4159, 17609, 19822, 33005, 26461, 72554, 6829, 210833, 342316, 290183, 736765, 133784, 2076511, 1535657
Offset: 1

Views

Author

Brandon Avila and Tanya Khovanova, Dec 11 2013

Keywords

Comments

Define 3-free Fibonacci numbers as sequences where b(n) = (b(n-1) + b(n-2))/3^i such that 3^i is the greatest power of 2 that divides b(n-1) + b(n-2). Read backwards from the n-th term, this sequence produces a subsequence of 3-free Fibonacci numbers where we must divide by a power of 3 every time we add.
For other examples of n-free Fibonacci numbers, see A232666, A214684, A224382.

Crossrefs

Cf. A233526.

Programs

  • Python
    def minDivisionRich(n, a=1, b=1):
        yield a
        yield b
        for i in range(2, n):
            a *= 3
            while a <= b:
                a *= 3
            a, b = b, a - b
            yield b

A266295 2-free tetranacci sequence beginning 1,3,5,7.

Original entry on oeis.org

1, 3, 5, 7, 1, 1, 7, 1, 5, 7, 5, 9, 13, 17, 11, 25, 33, 43, 7, 27, 55, 33, 61, 11, 5, 55, 33, 13, 53, 77, 11, 77, 109, 137, 167, 245, 329, 439, 295, 327, 695, 439, 439, 475, 1, 677, 199, 169, 523, 49, 235, 61, 217, 281, 397, 239, 567, 371, 787
Offset: 1

Views

Author

Jeremy F. Alm, Dec 28 2015

Keywords

Comments

For n>4, a(n) = (a(n-1) + a(n-2) + a(n-3) + a(n-4)) / 2^d, where 2^d is the largest power of 2 dividing a(n-1) + a(n-2) + a(n-3) + a(n-4). In other words, sum the previous four terms, then divide by two until the result is odd.

References

  • Alm, Herald, Miller, and Sexton, 2-Free Tetranacci Sequences, unpublished.

Crossrefs

Programs

  • Mathematica
    nxt[{a_, b_, c_, d_}] := {b, c, d, (a + b + c + d)/2^IntegerExponent[ a + b + c + d, 2]}; NestList[nxt,{1,3,5,7},60][[All,1]] (* Harvey P. Dale, Nov 09 2020 *)
  • PARI
    lista(nn) = {print1(x = 1, ", "); print1(y = 3, ", "); print1(z = 5, ", "); print1(t = 7, ", "); for (n=5, nn, tt = (x+y+z+t); tt /= 2^valuation(tt, 2); print1(tt, ", "); x=y; y=z; z=t; t=tt;);} \\ Michel Marcus, Dec 29 2015
  • Python
    ### CREATES A b-FILE ###
    def main():
        name = "b266295.txt"
        file = open(name, 'w')
        file.write('1' + ' ' + '1\n')
        file.write('2' + ' ' + '3\n')
        file.write('3' + ' ' + '5\n')
        file.write('4' + ' ' + '7\n')
        a, b, c, d = 1, 3, 5, 7
        for i in range(5,10001):
            x=a+b+c+d
            while x%2==0:
                x /= 2
            a, b, c, d = b, c, d, x
            file.write(str(i) + ' ' + str(int(d)) + '\n')
        file.close()
    main()
    

Formula

a(n) = (a(n-1) + a(n-2) + a(n-3) + a(n-4)) / 2^d, where 2^d is the largest power of 2 dividing a(n-1) + a(n-2) + a(n-3) + a(n-4).
a(n) = A000265(a(n-1) + a(n-2) + a(n-3) + a(n-4)). - Michel Marcus, Dec 29 2015
Showing 1-2 of 2 results.