A233525 Start with a(1) = 1, a(2) = 1, then a(n)*3^k = a(n+1) + a(n+2), with 3^k the smallest power of 3 (k>0) such that all terms a(n) are positive integers.
1, 1, 2, 1, 5, 4, 11, 1, 32, 49, 47, 100, 41, 259, 110, 667, 323, 1678, 1229, 3805, 7256, 4159, 17609, 19822, 33005, 26461, 72554, 6829, 210833, 342316, 290183, 736765, 133784, 2076511, 1535657
Offset: 1
Keywords
Links
- Brandon Avila, Table of n, a(n) for n = 1..1000
- Brandon Avila and Tanya Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
Crossrefs
Cf. A233526.
Programs
-
Python
def minDivisionRich(n, a=1, b=1): yield a yield b for i in range(2, n): a *= 3 while a <= b: a *= 3 a, b = b, a - b yield b
Comments