cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233531 G.f. A(x) such that triangle A233530, which transforms diagonals in the table of successive iterations of A(x), consists of all zeros after row 1.

Original entry on oeis.org

1, 1, -2, 6, -18, 44, -56, -300, 2024, -22022, -130456, -4241064, -103538532, -2893308780, -88314189664, -2924814872208, -104538530634844, -4010605941377292, -164409679858874856, -7172735079437282200, -331847552362286195156, -16229743737669369558956, -836695536495554388520400
Offset: 1

Views

Author

Paul D. Hanna, Dec 11 2013

Keywords

Examples

			G.f.: A(x) = x + x^2 - 2*x^3 + 6*x^4 - 18*x^5 + 44*x^6 - 56*x^7 - 300*x^8 + 2024*x^9 - 22022*x^10 - 130456*x^11 - 4241064*x^12 - 103538532*x^13 - 2893308780*x^14 - 88314189664*x^15 - 2924814872208*x^16 +...
If we form a table of coefficients in the iterations of A(x) like so:
[1,  0,   0,   0,    0,     0,      0,      0,       0,        0, ...];
[1,  1,  -2,   6,  -18,    44,    -56,   -300,    2024,   -22022, ...];
[1,  2,  -2,   3,    2,   -48,    228,   -734,   -1298,   -14630, ...];
[1,  3,   0,  -3,   18,   -54,    -24,    625,   -6324,   -46064, ...];
[1,  4,   4,  -6,   12,    26,   -332,    244,   -2078,  -108754, ...];
[1,  5,  10,   0,  -10,    90,   -192,  -2044,   -3190,  -137176, ...];
[1,  6,  18,  21,  -18,    54,    312,  -3178,  -22032,  -203692, ...];
[1,  7,  28,  63,   42,   -28,    616,   -931,  -46722,  -457746, ...];
[1,  8,  40, 132,  248,   156,    504,   3144,  -51348,  -913356, ...];
[1,  9,  54, 234,  702,  1296,   1656,   6924,  -24444, -1366530, ...];
[1, 10,  70, 375, 1530,  4580,   9916,  22122,   38570, -1538042, ...];
[1, 11,  88, 561, 2882, 11814,  38280, 104929,  273592,  -987932, ...];
[1, 12, 108, 798, 4932, 25542, 110604, 407932, 1351614,  2563858, ...]; ...
then the triangle A233530, that transforms one diagonal in the above table into another, consists of all zeros in column 0 after row 1:
1;
1, 1;
0, 2, 1;
0, 3, 3, 1;
0, 8, 9, 4, 1;
0, 38, 40, 18, 5, 1;
0, 268, 264, 112, 30, 6, 1;
0, 2578, 2379, 953, 240, 45, 7, 1;
0, 31672, 27568, 10500, 2505, 440, 63, 8, 1;
0, 475120, 392895, 143308, 32686, 5445, 728, 84, 9, 1;
0, 8427696, 6663624, 2342284, 514660, 82176, 10423, 1120, 108, 10, 1;
0, 172607454, 131211423, 44677494, 9514570, 1467837, 178689, 18214, 1632, 135, 11, 1; ...
Illustrate how T=A233530 transforms one diagonal in the above table into another:
T*[1, 1, -2, -3, 12, 90, 312, -931, -51348, -1366530, ...]
= [1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...];
T*[1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...]
= [1, 3, 4,  0, -18,-28, 504, 6924,  38570,  -987932, ...];
T*[1, 3, 4,  0, -18,-28, 504, 6924,  38570,  -987932, ...]
= [1, 4,10, 21,  42,156,1656,22122, 273592,  2563858, ...].
		

Crossrefs

Cf. A233530.

Programs

  • PARI
    /* Given A = g.f. A(x), Calculate Triangle A233530: */
    {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
    for(i=1, r+c-2, F=subst(F, x, A +x*O(x^(m+2)))); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    /* Calculates A = g.f. A(x) and then Prints ROWS of Triangle: */
    {ROWS=20;V=[1,1];print("");print1("This Sequence: [1, 1, ");
    for(i=2,ROWS,V=concat(V,0);A=x*truncate(Ser(V));
    for(n=0,#V-1,if(n==#V-1,V[#V]=-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
    print1("...]");print("");print("");print("Triangle A233530 begins:");
    for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}