cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233540 Primes p such that p+2, p+8, and p+12 are all prime.

Original entry on oeis.org

5, 11, 29, 59, 71, 101, 269, 431, 1289, 1481, 2129, 2339, 2381, 2789, 4721, 5519, 5639, 5849, 6569, 6959, 8999, 10091, 13679, 14549, 16061, 16649, 16691, 18119, 19379, 19421, 19751, 21011, 21491, 22271, 25931, 27689, 27791, 28619, 31181, 32369, 32561, 32831
Offset: 1

Views

Author

K. D. Bajpai, Dec 12 2013

Keywords

Comments

The primes produced (p, p+2, p+8, p+12) are not always consecutive primes.

Examples

			29 is in the sequence because 29, 29 + 2 = 31, 29 + 8 = 37, and 29 + 12 = 41 are all prime.
		

Crossrefs

Cf. A007530 (prime quadruples).
Cf. A078848 (same prime differences, but with consecutive primes).

Programs

  • Maple
    KD := proc() local a,b,c,p; p:=ithprime(n);a:=p+2;b:=p+8;c:=p+12;if isprime(a)and isprime(b) and isprime(c) then RETURN (p); fi; end: seq(KD(), n=1..10000);
    # K. D. Bajpai, Dec 27 2013
  • Mathematica
    Select[Prime[Range[4000]],AllTrue[#+{2,8,12},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 04 2016 *)
  • PARI
    is_a233540(p) = isprime(p) && isprime(p+2) && isprime(p+8) && isprime(p+12) \\ Michael B. Porter, Dec 27 2013

Formula

A046141 INTERSECT A046134. - R. J. Mathar, Aug 20 2019