cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233585 Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 12, 39, 71, 83, 484, 1028, 1447, 9913, 31542, 526880, 685669, 1396494, 1534902, 2295194, 9521643, 9643315, 42421746, 183962859, 553915624, 557976754, 6111180351, 10671513549, 61650520975, 106532505646
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Crossrefs

Cf. A233582.
Cf. A001620 (gamma).
Cf. Blazys's expansions: A233582 (Pi), A233583(e), A233584 (sqrt(e)), A233586 (2*gamma), A233587 and Blazys's continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[1/EulerGamma, 35] (* Robert G. Wilson v, May 22 2014 *)
    BlazysExpansion[n_, mx_] := Reap[Nest[(1/(#/Sow[Floor[#]] - 1)) &, n, mx];][[-1, 1]]; BlazysExpansion[1/EulerGamma, 35] (* Jan Mangaldan, Jan 04 2017 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(1/Euler, 670) \\ Execution; use very high real precision

Formula

1/gamma = 1+1/(1+1/(2+2/(2+2/(2+2/(2+2/(4+4/(12+...))))))).