A233656 a(n) = 3*a(n-1) - 2*(n-1), with a(0) = 1.
1, 3, 7, 17, 45, 127, 371, 1101, 3289, 9851, 29535, 88585, 265733, 797175, 2391499, 7174469, 21523377, 64570099, 193710263, 581130753, 1743392221, 5230176623, 15690529827, 47071589437, 141214768265, 423644304747, 1270932914191, 3812798742521, 11438396227509, 34315188682471
Offset: 0
Examples
a(1) = 3*1 - 2*0 = 3; a(2) = 3*3 - 2*1 = 7.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Programs
-
Mathematica
LinearRecurrence[{5,-7,3},{1,3,7},30] (* Harvey P. Dale, Feb 13 2015 *)
-
PARI
Vec((x^2+2*x-1)/((x-1)^2*(3*x-1)) + O(x^100)) \\ Colin Barker, Dec 17 2013
Formula
a(n) = 3*a(n-1) - 2*(n-1), with a(0) = 1.
(a(n+1) - a(n))/2 = A007051(n).
From Colin Barker, Dec 17 2013: (Start)
a(n) = (1 + 3^n + 2*n)/2.
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
G.f.: (x^2+2*x-1) / ((x-1)^2*(3*x-1)). (End)
E.g.f.: exp(x)*(1 + exp(2*x) + 2*x)/2. - Stefano Spezia, Mar 20 2022
Comments