cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233656 a(n) = 3*a(n-1) - 2*(n-1), with a(0) = 1.

Original entry on oeis.org

1, 3, 7, 17, 45, 127, 371, 1101, 3289, 9851, 29535, 88585, 265733, 797175, 2391499, 7174469, 21523377, 64570099, 193710263, 581130753, 1743392221, 5230176623, 15690529827, 47071589437, 141214768265, 423644304747, 1270932914191, 3812798742521, 11438396227509, 34315188682471
Offset: 0

Views

Author

Richard R. Forberg, Dec 14 2013

Keywords

Comments

Inverse binomial transform of this sequence is A090129.
Conjecture: Last digit of a(n) has repeating pattern of 20 digits as follows: {1, 3, 7, 7, 5, 7, 1, 1, 9, 1, 5, 5, 3, 5, 9, 9, 7, 9, 3, 3}, with an equal frequency of the five odd digits.

Examples

			a(1) = 3*1 - 2*0 = 3;
a(2) = 3*3 - 2*1 = 7.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-7,3},{1,3,7},30] (* Harvey P. Dale, Feb 13 2015 *)
  • PARI
    Vec((x^2+2*x-1)/((x-1)^2*(3*x-1)) + O(x^100)) \\ Colin Barker, Dec 17 2013

Formula

a(n) = 3*a(n-1) - 2*(n-1), with a(0) = 1.
(a(n+1) - a(n))/2 = A007051(n).
From Colin Barker, Dec 17 2013: (Start)
a(n) = (1 + 3^n + 2*n)/2.
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3).
G.f.: (x^2+2*x-1) / ((x-1)^2*(3*x-1)). (End)
E.g.f.: exp(x)*(1 + exp(2*x) + 2*x)/2. - Stefano Spezia, Mar 20 2022