cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233693 Expansion of q * psi(-q) * chi(-q^6) * psi(-q^9) / (phi(-q) * phi(-q^18)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 30, 38, 48, 60, 75, 92, 114, 140, 170, 208, 252, 304, 366, 439, 526, 626, 744, 884, 1044, 1232, 1451, 1704, 1998, 2336, 2730, 3182, 3700, 4300, 4986, 5772, 6672, 7700, 8876, 10212, 11736, 13472, 15438, 17673, 20207, 23076
Offset: 1

Views

Author

Michael Somos, Dec 14 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 6*q^6 + 8*q^7 + 11*q^8 + 14*q^9 + ...
		

Crossrefs

Cf. A123629.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1-x^(6*k)) * (1-x^(9*k)) * (1+x^(18*k))^2 / ((1-x^k) * (1-x^(12*k)) * (1-x^(18*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    QP := QPochhammer; A233693[n_]:= SeriesCoefficient[QP[q^4]*QP[q^6] *QP[q^9]*QP[q^36]^2/(QP[q]* QP[q^12]*QP[q^18]^3), {q, 0, n}]; Table[A233693[n], {n, 0, 50}] (* G. C. Greubel, Dec 25 2017 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A) * eta(x^9 + A) * eta(x^36 + A)^2 / (eta(x + A) * eta(x^12 + A) * eta(x^18 + A)^3), n))}

Formula

Expansion of eta(q^4) * eta(q^6) * eta(q^9) * eta(q^36)^2 / (eta(q) * eta(q^12) * eta(q^18)^3) in powers of q.
Euler transform of period 36 sequence [ 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, ...].
a(2*n) = A123629(n).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015