A233699 Ideal rectangle side length for packing squares with side 1/n.
7, 7, 3, 9, 2, 0, 8, 8, 0, 2, 1, 7, 8, 7, 1, 7, 2, 3, 7, 6, 6, 8, 9, 8, 1, 9, 9, 9, 7, 5, 2, 3, 0, 2, 2, 7, 0, 6, 2, 7, 3, 9, 8, 8, 1, 4, 4, 8, 1, 5, 8, 1, 2, 5, 2, 8, 2, 6, 6, 9, 8, 7, 5, 2, 4, 4, 0, 0, 8, 9, 6, 4, 4, 8, 3, 8, 4, 1, 0, 4, 8, 6
Offset: 0
Examples
0.77392088021787172376689819997523022706273988144815812528266987524400896448...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- M. M. Paulhus, An Algorithm for Packing Squares, Journal of Combinatorial Theory,1998, A,82(2), pages 147-157.
- Pegg Jr, Ed., Wolfram Demonstrations Project, Packing Squares with Side 1/n
- Wikipedia, Packing Squares with Side 1/n
Crossrefs
Essentially the same as A164102.
Programs
-
Magma
C := ComplexField(); (Pi(C)^2-6)/5 // G. C. Greubel, Jan 26 2018
-
Mathematica
RealDigits[(Pi^2-6)/5,10,120][[1]] (* Harvey P. Dale, Aug 21 2017 *)
-
PARI
(Pi^2-6)/5;
Formula
Equals (Pi^2-6)/5 = A164102/10 - 6/5.
Comments