A233810 Number of starting configurations of Nim with n pieces such that 1st player wins. Partitions of n such that their xor-sum is nonzero.
0, 1, 1, 3, 3, 7, 7, 15, 16, 30, 32, 56, 61, 101, 104, 176, 188, 297, 317, 490, 529, 792, 849, 1255, 1362, 1958, 2119, 3010, 3275, 4565, 4900, 6842, 7378, 10143, 10895, 14883, 16002, 21637, 23197, 31185, 33473, 44583, 47773, 63261, 67809, 89134, 95416, 124754, 133634, 173525, 185788, 239943, 257006, 329931, 353294, 451276, 483478, 614154, 657952, 831820, 891292, 1121505, 1201037, 1505499, 1612352, 2012558, 2154724, 2679689, 2868121, 3554345, 3803081, 4697205, 5024237, 6185689, 6613581, 8118264, 8674712, 10619863, 11343319, 13848650, 14784359, 18004327
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1500
- C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, Second Series, vol. 3 (1/4), 1902, 35-39.
Programs
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, x^k, If[i<1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]]; a[n_] := Total[Rest[T[n]]]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Nov 14 2016, after Alois P. Heinz *)