A093035 Number of triples (d1,d2,d3) where each element is a divisor of n and d1 + d2 + d3 <= n.
0, 0, 1, 4, 1, 17, 1, 20, 8, 20, 1, 103, 1, 20, 27, 54, 1, 109, 1, 112, 27, 20, 1, 315, 8, 20, 27, 112, 1, 315, 1, 112, 27, 20, 27, 481, 1, 20, 27, 324, 1, 321, 1, 112, 125, 20, 1, 695, 8, 112, 27, 112, 1, 321, 27, 324, 27, 20, 1, 1285, 1, 20
Offset: 1
Examples
a(9) = 8 because the divisors of 9 are {1,3,9} making the valid triples (1,1,1), (1,1,3), (1,3,1), (1,3,3), (3,1,1), (3,1,3), (3,3,1), (3,3,3).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Cf. A233819.
Programs
-
PARI
a(n) = {nb = 0; d = divisors(n); for (i = 1, #d, for (j = 1, #d, for (k = 1, #d, if (d[i]+d[j]+d[k] <= n, nb++);););); nb;} \\ Michel Marcus, Aug 21 2013
Comments