A278355
a(n) = sum of the perimeters of the Ferrers boards of the partitions of n. Also, sum of the perimeters of the diagrams of the regions of the set of partitions of n.
Original entry on oeis.org
0, 4, 12, 24, 48, 80, 140, 216, 344, 512, 768, 1100, 1596, 2224, 3120, 4272, 5852, 7860, 10576, 13992, 18520, 24208, 31596, 40824, 52696, 67404, 86088, 109176, 138180, 173812, 218252, 272540, 339708, 421464, 521848, 643504, 792056, 971248, 1188804, 1450348, 1766184, 2144416, 2599164, 3141748, 3791248, 4563780
Offset: 0
For n = 5 consider the partitions of 5 in colexicographic order (as shown in the 5th row of the triangle A211992) and its associated diagram of regions as shown below:
. Regions Minimalist
. Partitions of 5 diagram version
. _ _ _ _ _
. 1, 1, 1, 1, 1 |_| | | | | _| | | | |
. 2, 1, 1, 1 |_ _| | | | _ _| | | |
. 3, 1, 1 |_ _ _| | | _ _ _| | |
. 2, 2, 1 |_ _| | | _ _| | |
. 4, 1 |_ _ _ _| | _ _ _ _| |
. 3, 2 |_ _ _| | _ _| |
. 5 |_ _ _ _ _| _ _ _ _ _|
.
Then consider the following table which contains the Ferrers boards of the partitions of 5 and the diagram of every region of the set of partitions of 5:
-------------------------------------------------------------------------
| Partitions | | | Regions | | |
| of 5 | Ferrers | Peri- | of 5 | Region | Peri- |
|(See A211992)| board | meter |(see A220482)| diagram | meter |
-------------------------------------------------------------------------
| _ | _ |
| 1 |_| | 1 |_| 4 |
| 1 |_| | _ |
| 1 |_| | 1 _|_| |
| 1 |_| | 2 |_|_| 8 |
| 1 |_| 12 | _ |
| _ _ | 1 |_| |
| 2 |_|_| | 1 _ _|_| |
| 1 |_| | 3 |_|_|_| 12 |
| 1 |_| | _ _ |
| 1 |_| 12 | 2 |_|_| 6 |
| _ _ _ | _ |
| 3 |_|_|_| | 1 |_| |
| 1 |_| | 1 |_| |
| 1 |_| 12 | 1 _|_| |
| _ _ | 2 _ _|_|_| |
| 2 |_|_| | 4 |_|_|_|_| 18 |
| 2 |_|_| | _ _ _ |
| 1 |_| 10 | 3 |_|_|_| 8 |
| _ _ _ _ | _ |
| 4 |_|_|_|_| | 1 |_| |
| 1 |_| 12 | 1 |_| |
| _ _ _ | 1 |_| |
| 3 |_|_|_| | 1 |_| |
| 2 |_|_| 10 | 1 _|_| |
| _ _ _ _ _ | 2 _ _ _|_|_| |
| 6 |_|_|_|_|_| 12 | 5 |_|_|_|_|_| 24 |
| | |
-------------------------------------------------------------------------
| Sum of perimeters: 80 <-- equals --> 80 |
-------------------------------------------------------------------------
The sum of the perimeters of the Ferrers boards is 12 + 12 + 12 + 10 + 12 + 10 + 12 = 80, so a(5) = 80.
On the other hand, the sum of the perimeters of the diagrams of regions is 4 + 8 + 12 + 6 + 18 + 8 + 24 = 80, equaling the sum of the perimeters of the Ferrers boards.
.
Illustration of first six polygons of an infinite diagram constructed with the boundary segments of the minimalist diagram of regions and its mirror (note that the diagram looks like reflections on a mountain lake):
11............................................................
. /\
. / \
. / \
7................................... / \
. /\ / \
5..................... / \ /\/ \
. /\ / \ /\ / \
3........... / \ / \ / \/ \
2....... /\ / \ /\/ \ / \
1... /\ / \ /\/ \ / \ /\/ \
0 /\/ \/ \/ \/ \/ \
. \/\ /\ /\ /\ /\ /
. \/ \ / \/\ / \ / \/\ /
. \/ \ / \/\ / \ /
. \ / \ / \ /\ /
. \/ \ / \/ \ /
. \ / \/\ /
. \/ \ /
. \ /
. \ /
. \ /
. \/
n:
. 0 1 2 3 4 5 6
Perimeter of the n-th polygon:
. 0 4 8 12 24 32 60
a(n) is the sum of the perimeters of the first n polygons:
. 0 4 12 24 48 80 140
.
For n = 5, the sum of the perimeters of the first five polygons is 4 + 8 + 12 + 24 + 32 = 80, so a(5) = 80.
For n = 6, the sum of the perimeters of the first six polygons is 4 + 8 + 12 + 24 + 32 + 60 = 140, so a(6) = 140.
For another version of the above diagram see A228109.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A194446,
A211992,
A220482,
A225600,
A211978,
A233968,
A244968.
A278602
Sum of the perimeters of all regions of the n-th section of a modular table of partitions.
Original entry on oeis.org
0, 4, 8, 12, 24, 32, 60, 76, 128, 168, 256, 332, 496, 628, 896, 1152, 1580, 2008, 2716, 3416, 4528, 5688, 7388, 9228, 11872, 14708, 18684, 23088, 29004, 35632, 44440, 54288, 67168, 81756, 100384, 121656, 148552, 179192, 217556, 261544, 315836, 378232, 454748, 542584, 649500, 772532, 920912
Offset: 0
For n = 1..6, consider the modular table of partitions for the first six positive integers as shown below in the fourth quadrant of the square grid (see Figure 1):
|--------------|-----------------------------------------------------|
| Modular table| Sections |
| of partitions|-----------------------------------------------------|
| for n=1..6 | 1 2 3 4 5 6 |
1--------------|-----------------------------------------------------|
. _ _ _ _ _ _ _ _ _ _ _ _
. |_| | | | | | |_| _| | | | | | | | | |
. |_ _| | | | | |_ _| _ _| | | | | | | |
. |_ _ _| | | | |_ _ _| _ _ _| | | | | |
. |_ _| | | | |_ _| | | | | |
. |_ _ _ _| | | |_ _ _ _| _ _ _ _| | | |
. |_ _ _| | | |_ _ _| | | |
. |_ _ _ _ _| | |_ _ _ _ _| _ _ _ _ _| |
. |_ _| | | |_ _| | |
. |_ _ _ _| | |_ _ _ _| |
. |_ _ _| | |_ _ _| |
. |_ _ _ _ _ _| |_ _ _ _ _ _|
.
. Figure 1. Figure 2.
.
The table contains 11 regions, see Figure 1.
The regions are distributed in 6 sections. The Figure 2 shows the sections separately.
Then consider the following table which contains the diagram of every region separately:
---------------------------------------------------------------------
| | | | | | |
| Section | Region | Parts | Region | Peri- | a(n) |
| | |(A220482)| diagram | meter | |
---------------------------------------------------------------------
| | | | _ | | |
| 1 | 1 | 1 | |_| | 4 | 4 |
---------------------------------------------------------------------
| | | | _ | | |
| | | 1 | _| | | | |
| 2 | 2 | 2 | |_ _| | 8 | 8 |
---------------------------------------------------------------------
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | _ _| | | | |
| 3 | 3 | 3 | |_ _ _| | 12 | 12 |
---------------------------------------------------------------------
| | | | _ _ | | |
| | 4 | 2 | |_ _| | 6 | |
| |---------|---------|----------------------------| |
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | _| | | | |
| | | 2 | _ _| | | | |
| 4 | 5 | 4 | |_ _ _ _| | 18 | 24 |
---------------------------------------------------------------------
| | | | _ _ _ | | |
| | 6 | 3 | |_ _ _| | 8 | |
| |---------|---------|--------------------|-------| |
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | _| | | | |
| | | 2 | _ _ _| | | | |
| 5 | 7 | 5 | |_ _ _ _ _| | 24 | 32 |
---------------------------------------------------------------------
| | | | _ _ | | |
| | 8 | 2 | |_ _| | 6 | |
| |---------|---------|--------------------|-------| |
| | | | _ _ | | |
| | | 2 | _ _| | | | |
| | 9 | 4 | |_ _ _ _| | 12 | |
1 |---------|---------|--------------------|-------| |
| | | | _ _ _ | | |
| | 10 | 3 | |_ _ _| | 8 | |
| |---------|---------|--------------------|-------| |
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | _| | | | |
| | | 2 | | | | | |
| | | 2 | _| | | | |
| | | 3 | _ _ _| | | | |
| 6 | 11 | 6 | |_ _ _ _ _ _| | 34 | 60 |
---------------------------------------------------------------------
.
For n = 1..3, there is only one region in every section. The perimeters of the regions are 4, 8 and 12 respectively, so a(1) = 4, a(2) = 8, and a(3) = 12.
For n = 4, the 4th section contains two regions with perimeters 6 and 18 respectively. The sum of the perimeters is 6 + 18 = 24, so a(4) = 24.
For n = 5, the 5th section contains two regions with perimeters 8 and 24 respectively. The sum of the perimeters is 8 + 24 = 32, so a(5) = 32.
For n = 6, the 6th section contains four regions with perimeters 6, 12, 8 and 34 respectively. The sum of the perimeters is 6 + 12 + 8 + 34 = 60, so a(6) = 60.
A244968
Area between two valleys at height 0 under the infinite Dyck path related to partitions in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1, multiplied by 2.
Original entry on oeis.org
1, 4, 9, 28, 54, 151
Offset: 1
For k = 6, the diagram 1 represents the partitions of 6. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y], see below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _ _ _ _ _ _ _ _ _
. 11 |_ _ _ | 6 _ _ _ |
. 10 |_ _ _|_ | 3+3 _ _ _|_ |
. 9 |_ _ | | 4+2 _ _ | |
. 8 |_ _|_ _|_ | 2+2+2 _ _|_ _|_ |
. 7 |_ _ _ | | 5+1 _ _ _ | |
. 6 |_ _ _|_ | | 3+2+1 _ _ _|_ | |
. 5 |_ _ | | | 4+1+1 _ _ | | |
. 4 |_ _|_ | | | 2+2+1+1 _ _|_ | | |
. 3 |_ _ | | | | 3+1+1+1 _ _ | | | |
. 2 |_ | | | | | 2+1+1+1+1 _ | | | | |
. 1 |_|_|_|_|_|_| 1+1+1+1+1+1 | | | | | |
.
Then we use the elements from the above diagram to draw an infinite Dyck path in which the j-th odd-indexed segment has A141285(j) up-steps and the j-th even-indexed segment has A194446(j) down-steps.
For the illustration of initial terms we use two opposite Dyck paths, as shown below:
11 ...........................................................
. /\
. /
. /
7 .................................. /
. /\ /
5 .................... / \ /\/
. /\ / \ /\ /
3 .......... / \ / \ / \/
2 ..... /\ / \ /\/ \ /
1 .. /\ / \ /\/ \ / \ /\/
0 /\/ \/ \/ \/ \/
. \/\ /\ /\ /\ /\
. \/ \ / \/\ / \ / \/\
. 1 \/ \ / \/\ / \
. 4 \ / \ / \ /\
. 9 \/ \ / \/ \
. \ / \/\
. 28 \/ \
. \
. 54 \
. \
. \/
.
The diagram is infinite. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n).
Calculations:
a(1) = 1.
a(2) = 2^2 = 4.
a(3) = 3^2 = 9.
a(4) = 2^2-1^2+5^2 = 4-1+25 = 28.
a(5) = 3^2-2^2+7^2 = 9-4+49 = 54.
a(6) = 2^2-1^2+5^2-3^2+6^2-5^2+11^2 = 4-1+25-9+36-25+121 = 151.
Cf.
A000041,
A135010,
A141285,
A193870,
A194446,
A194447,
A206437,
A211009,
A211978,
A220517,
A225600,
A225610,
A228109,
A228110,
A228350,
A230440,
A233968.
Showing 1-3 of 3 results.
Comments