cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234043 a(n) = binomial(5*(n+1),4)/5, with n >= 0.

Original entry on oeis.org

1, 42, 273, 969, 2530, 5481, 10472, 18278, 29799, 46060, 68211, 97527, 135408, 183379, 243090, 316316, 404957, 511038, 636709, 784245, 956046, 1154637, 1382668, 1642914, 1938275, 2271776, 2646567, 3065923, 3533244, 4052055, 4626006, 5258872, 5954553, 6717074
Offset: 0

Views

Author

Wolfdieter Lang, Feb 24 2014

Keywords

Comments

Used as one of the 5-section parts of A234042.
The Fuss-Catalan numbers are Cat(d,k) = (1/(k*(d-1)+1))*binomial(k*d,k) and enumerate the (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link). a(n) = Cat(n,5) (Offset=1), so enumerates the (n+1)-gon partitions of a (5*(n-1)+2)-gon. Analogous series are A000326 (k=3) and A100157 (k=4). - Tom Copeland, Oct 05 2014

Crossrefs

Programs

  • Magma
    [Binomial(5*(n+1),4)/5: n in [0..40]]; // Vincenzo Librandi, Feb 26 2014
  • Mathematica
    CoefficientList[Series[(1 + 37 x + 73 x^2 + 14 x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)

Formula

G.f: (1 + 37*x + 73*x^2 + 14*x^3)/(1-x)^5.
a(n) = A234042(5*n+1) for n >= 0.
a(n) = (n+1)*(5*n+2)*(5*n+3)*(5*n+4)/24.
From Amiram Eldar, Sep 20 2022: (Start)
Sum_{n>=0} 1/a(n) = 10*sqrt(5)*log(phi) + 5*log(5) - 2*sqrt(25-38/sqrt(5))*Pi, where phi is the golden ratio (A001622).
Sum_{n>=0} (-1)^n/a(n) = 4*sqrt(5)*log(phi) + 2*sqrt(26-38/sqrt(5))*Pi - 32*log(2). (End)