cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234098 Primes of the form (p*q + 1)/2, where p and q are distinct primes.

Original entry on oeis.org

11, 17, 29, 43, 47, 67, 71, 73, 89, 101, 103, 107, 109, 127, 151, 191, 197, 223, 227, 241, 251, 269, 277, 283, 317, 349, 359, 373, 397, 409, 433, 457, 461, 467, 487, 521, 541, 569, 571, 631, 643, 647, 659, 673, 701, 709, 719, 733, 739, 751, 757, 769, 821
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2013

Keywords

Examples

			11 = (3*7 + 1)/2, 17 = (5*7 + 1)/2.
		

Crossrefs

Programs

  • Haskell
    a234098 n = a234098_list !! (n-1)
    a234098_list = filter ((== 1) . a010051') $
                          map ((flip div 2) . (+ 1)) a046388_list
    -- Reinhard Zumkeller, Jan 02 2014
  • Mathematica
    t = Select[Range[1, 7000, 2], Map[Last, FactorInteger[#]] == Table[1, {2}] &]; Take[(t + 1)/2, 120] (* A234096 *)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A233562 *)
    (w + 1)/2 (* A234098 *)  (* Peter J. C. Moses, Dec 23 2013 *)
    Take[Select[(Times@@#+1)/2&/@Subsets[Prime[Range[200]],{2}],PrimeQ]//Union,60] (* Harvey P. Dale, Jun 24 2025 *)