A234098 Primes of the form (p*q + 1)/2, where p and q are distinct primes.
11, 17, 29, 43, 47, 67, 71, 73, 89, 101, 103, 107, 109, 127, 151, 191, 197, 223, 227, 241, 251, 269, 277, 283, 317, 349, 359, 373, 397, 409, 433, 457, 461, 467, 487, 521, 541, 569, 571, 631, 643, 647, 659, 673, 701, 709, 719, 733, 739, 751, 757, 769, 821
Offset: 1
Examples
11 = (3*7 + 1)/2, 17 = (5*7 + 1)/2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a234098 n = a234098_list !! (n-1) a234098_list = filter ((== 1) . a010051') $ map ((flip div 2) . (+ 1)) a046388_list -- Reinhard Zumkeller, Jan 02 2014
-
Mathematica
t = Select[Range[1, 7000, 2], Map[Last, FactorInteger[#]] == Table[1, {2}] &]; Take[(t + 1)/2, 120] (* A234096 *) v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A233562 *) (w + 1)/2 (* A234098 *) (* Peter J. C. Moses, Dec 23 2013 *) Take[Select[(Times@@#+1)/2&/@Subsets[Prime[Range[200]],{2}],PrimeQ]//Union,60] (* Harvey P. Dale, Jun 24 2025 *)