cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234104 Primes of the form (p*q*r + 1)/2, where p, q, r are distinct primes.

Original entry on oeis.org

53, 83, 137, 173, 179, 193, 233, 281, 353, 389, 431, 443, 449, 479, 503, 523, 557, 587, 593, 641, 677, 773, 823, 827, 839, 853, 953, 983, 1019, 1033, 1061, 1093, 1097, 1117, 1151, 1187, 1223, 1277, 1307, 1433, 1439, 1453, 1493, 1511, 1579, 1583, 1601, 1619
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2013

Keywords

Examples

			(3*5*7 + 1)/2 = 53.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local s;
      if not isprime(n) then return false fi;
      s:= ifactors(2*n-1)[2];
      nops(s)=3 and map(t -> t[2],s)=[1,1,1]
    end proc:
    select(filter, [seq(i,i=3..1619,2)]); # Robert Israel, May 11 2020
  • Mathematica
    t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t + 1)/2, 120] (* A234102 *)
    v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}]  (* A234103 *)
    (w + 1)/2  (* A234104 *)    (* Peter J. C. Moses, Dec 23 2013 *)
    Module[{nn=100},Select[(Times@@#+1)/2&/@Subsets[Prime[Range[nn]],{3}],PrimeQ[ #] && #<=5*Prime[nn]&]]//Union (* Harvey P. Dale, Jan 29 2023 *)