A234104 Primes of the form (p*q*r + 1)/2, where p, q, r are distinct primes.
53, 83, 137, 173, 179, 193, 233, 281, 353, 389, 431, 443, 449, 479, 503, 523, 557, 587, 593, 641, 677, 773, 823, 827, 839, 853, 953, 983, 1019, 1033, 1061, 1093, 1097, 1117, 1151, 1187, 1223, 1277, 1307, 1433, 1439, 1453, 1493, 1511, 1579, 1583, 1601, 1619
Offset: 1
Examples
(3*5*7 + 1)/2 = 53.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local s; if not isprime(n) then return false fi; s:= ifactors(2*n-1)[2]; nops(s)=3 and map(t -> t[2],s)=[1,1,1] end proc: select(filter, [seq(i,i=3..1619,2)]); # Robert Israel, May 11 2020
-
Mathematica
t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t + 1)/2, 120] (* A234102 *) v = Flatten[Position[PrimeQ[(t + 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A234103 *) (w + 1)/2 (* A234104 *) (* Peter J. C. Moses, Dec 23 2013 *) Module[{nn=100},Select[(Times@@#+1)/2&/@Subsets[Prime[Range[nn]],{3}],PrimeQ[ #] && #<=5*Prime[nn]&]]//Union (* Harvey P. Dale, Jan 29 2023 *)