A234316 Irregular triangle T, read by rows, such that row n lists the larger parts of the Goldbach partitions of 2n (in decreasing order).
2, 3, 5, 7, 5, 7, 11, 7, 13, 11, 13, 11, 17, 13, 19, 17, 11, 19, 17, 13, 23, 19, 13, 23, 17, 23, 19, 17, 29, 19, 31, 29, 23, 17, 31, 29, 23, 19, 31, 19, 37, 29, 23, 37, 31, 29, 23, 41, 37, 31, 43, 41, 29, 23, 43, 41, 37, 31, 29, 47, 43, 37, 31, 47, 41, 29, 47, 43, 41, 37, 31
Offset: 2
Examples
The irregular triangle T(n,i) begins: n | 2*n | i = 1 2 3 4 5 6 ... ---+-----+------------------------------ 2 | 4 | 2 3 | 6 | 3 4 | 8 | 5 5 | 10 | 7 5 6 | 12 | 7 7 | 14 | 11 7 8 | 16 | 13 11 9 | 18 | 13 11 10 | 20 | 17 13 11 | 22 | 19 17 11 12 | 24 | 19 17 13 13 | 26 | 23 19 13 14 | 28 | 23 17 15 | 30 | 23 19 17 16 | 32 | 29 19 17 | 34 | 31 29 23 17 18 | 36 | 31 29 23 19 19 | 38 | 31 19 20 | 40 | 37 29 23 21 | 42 | 37 31 29 23 22 | 44 | 41 37 31 23 | 46 | 43 41 29 23 24 | 48 | 43 41 37 31 29 25 | 50 | 47 43 37 31 26 | 52 | 47 41 29 27 | 54 | 47 43 41 37 31 28 | 56 | 53 43 37 29 | 58 | 53 47 41 29 30 | 60 | 53 47 43 41 37 31 ... Reformatted and extended. - _Wolfdieter Lang_, May 14 2016
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Mathematica
Table[First /@ DeleteDuplicates@ Map[Sort[{#, 2 n - #}, Greater] &, Select[2 n - Prime@ Range@ PrimePi[2 n], PrimeQ]], {n, 30}] // Flatten (* Michael De Vlieger, May 15 2016 *)
-
PARI
for(n=2, 18, forprime(p=2, n, if(isprime(2*n-p), print1(2*n-p", ")))) \\ Ralf Stephan, Dec 26 2013
Formula
T(n,i) = 2n - A184995(n,i).
T(n,i) = n + A182138(n,i). - Ralf Stephan, Dec 26 2013
Comments