cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234364 Primes which are the arithmetic mean of the squares of four consecutive primes.

Original entry on oeis.org

157, 337, 673, 1213, 1777, 2137, 11677, 20773, 27259, 32803, 80407, 84787, 89227, 105397, 120097, 165313, 176461, 181513, 250543, 417337, 453667, 463807, 576883, 610867, 791317, 804757, 853873, 935167, 949687, 1087903
Offset: 1

Views

Author

K. D. Bajpai, Dec 25 2013

Keywords

Examples

			157 is in the sequence because (7^2 + 11^2 + 13^2 + 17^2)/4 = 157 which is prime.
1213 is in the sequence because (29^2 + 31^2 + 37^2 + 41^2)/4 = 1213 which is prime.
		

Crossrefs

Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3.
Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2.

Programs

  • Maple
    KD := proc() local a,b,d,e,f,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); g:=(a^2+b^2+d^2+e^2)/4; if g=floor(g) and isprime(g) then RETURN (g);  fi;  end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[Mean[Prime[Range[n, n + 3]]^2], {n, 250}], PrimeQ] (* Alonso del Arte, Dec 26 2013 *)
    Select[Mean/@(Partition[Prime[Range[200]],4,1]^2),PrimeQ] (* Harvey P. Dale, Oct 08 2014 *)