A234364 Primes which are the arithmetic mean of the squares of four consecutive primes.
157, 337, 673, 1213, 1777, 2137, 11677, 20773, 27259, 32803, 80407, 84787, 89227, 105397, 120097, 165313, 176461, 181513, 250543, 417337, 453667, 463807, 576883, 610867, 791317, 804757, 853873, 935167, 949687, 1087903
Offset: 1
Keywords
Examples
157 is in the sequence because (7^2 + 11^2 + 13^2 + 17^2)/4 = 157 which is prime. 1213 is in the sequence because (29^2 + 31^2 + 37^2 + 41^2)/4 = 1213 which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..5666
Crossrefs
Programs
-
Maple
KD := proc() local a,b,d,e,f,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); g:=(a^2+b^2+d^2+e^2)/4; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=1..500);
-
Mathematica
Select[Table[Mean[Prime[Range[n, n + 3]]^2], {n, 250}], PrimeQ] (* Alonso del Arte, Dec 26 2013 *) Select[Mean/@(Partition[Prime[Range[200]],4,1]^2),PrimeQ] (* Harvey P. Dale, Oct 08 2014 *)