cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234367 Numbers such that gcd(sigma(n), n) != 1 and numerator(sigma(n)/n) > n.

Original entry on oeis.org

20, 70, 80, 104, 160, 208, 272, 320, 350, 416, 464, 490, 544, 550, 650, 770, 832, 928, 1088, 1184, 1190, 1280, 1300, 1312, 1332, 1430, 1610, 1664, 1696, 1700, 1750, 1856, 1870, 1952, 2170, 2196, 2210, 2368, 2420, 2530, 2560, 2590, 2624, 2628, 2750, 2990, 3010
Offset: 1

Views

Author

Michel Marcus, Dec 28 2013

Keywords

Comments

For numbers in A014567, we have A017665(n) = numerator(sigma(n)/n) = sigma(n) = A000203(n), so A017665(n) > n.
For numbers in A069059, since both terms of the fraction are divisible by their GCD, A009194(n), we will have A017665(n) < A000203(n).
Here we are interested in terms of A069059 for which we still have A017665(n) > n, despite the division by the GCD.
Numbers such that sigma(n)/n > gcd(sigma(n), n) > 1. - Charlie Neder, Sep 08 2018

Examples

			For n=20, we have A000203(20) = sigma(20) = 42, and since gcd(42, 20) != 1, then A017665(20) = numerator(42/20) = numerator(21/10) = 21 < sigma(20), but still A017665(20) > 20.
		

Crossrefs

Programs

  • Mathematica
    gnQ[n_]:=Module[{s=DivisorSigma[1,n]},GCD[s,n]!=1&&Numerator[s/n]>n]; Select[ Range[ 3100],gnQ] (* Harvey P. Dale, Jan 03 2018 *)
  • PARI
    isok(n) = (gcd(sigma(n), n) != 1) && (numerator(sigma(n)/n) > n);