A234105 Integers of the form (p*q*r*s - 1)/2, where p, q, r, s are distinct primes.
577, 682, 892, 997, 1072, 1207, 1402, 1501, 1522, 1567, 1627, 1657, 1852, 1897, 1942, 1963, 2152, 2194, 2242, 2257, 2320, 2392, 2422, 2467, 2502, 2557, 2593, 2656, 2782, 2827, 2932, 3022, 3052, 3097, 3139, 3202, 3272, 3277, 3349, 3382, 3391, 3517, 3547, 3580
Offset: 1
Programs
-
Mathematica
t = Select[Range[1, 20000, 2], Map[Last, FactorInteger[#]] == Table[1, {4}] &]; Take[(t - 1)/2, 120] (* A234105 *) v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A234498 *) (w - 1)/2 (* A234499 *) (* Peter J. C. Moses, Dec 23 2013 *)
Formula
-1 + A234500.