A234499 Primes of the form (p*q*r*s - 1)/2, where p, q, r,s are distinct primes.
577, 997, 1567, 1627, 1657, 2467, 2557, 2593, 3391, 3517, 3547, 3607, 3697, 3727, 3877, 4231, 4273, 4357, 4933, 5167, 5227, 5347, 5407, 5527, 5857, 5869, 6121, 6451, 7297, 7417, 7927, 8053, 8179, 8389, 8431, 8521, 8627, 8677, 9091, 9397, 9439, 9547, 9613
Offset: 1
Examples
(See A234498.)
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
t = Select[Range[1, 20000, 2], Map[Last, FactorInteger[#]] == Table[1, {4}] &]; Take[(t - 1)/2, 120] (* A234105 *) v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A234498 *) (w - 1)/2 (* A234499 *) (* Peter J. C. Moses, Dec 23 2013 *) Module[{upto=10000,maxp},maxp=Ceiling[PrimePi[upto/30]];Select[Sort[ Select[ (#-1)/2&/@Times@@@Subsets[Prime[Range[maxp]],{4}], PrimeQ]], #<=upto&]] (* Harvey P. Dale, Feb 07 2016 *)