A234572 Primes of the form P(p-1), where p is a prime and P(.) is the partition function (A000041).
2, 5, 11, 17977, 790738119649411319, 2058791472042884901563, 27833079238879849385687, 8121368081058512888507057, 675004412390512738195023734124239, 1398703012615213588677365804960180341, 16193798232344933888778097136641377589301, 204931453786129197483756438132982529754356479553, 3019564607799532159016586951616642980389816614848623, 22757918197082858017617136646280039394687006502870793231847, 1078734573992480956821414895441907729656949308800686938161281
Offset: 1
Keywords
Examples
a(1) = 2 since 2 = P(3-1) with 2 and 3 both prime. a(2) = 5 since 5 = P(5-1) with 5 prime. a(3) = 11 since 11 = P(7-1) with 7 and 11 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..50
Crossrefs
Programs
-
Mathematica
p[n_]:= A234569(n) Table[PartitionsP[p[n]-1],{n,1,15}]
Comments