cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234589 Expansion of g.f.: (1+x^6+x^7)/(1-2*x+x^6-x^7-x^8).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 255, 508, 1012, 2016, 4016, 8000, 15937, 31749, 63249, 126002, 251016, 500064, 996207, 1984602, 3953641, 7876278, 15690791, 31258536, 62271945, 124055559, 247138286, 492338537, 980816202, 1953940937, 3892559256, 7754593434, 15448376086, 30775607480, 61309875581, 122138964964
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2014

Keywords

Comments

a(n) is the number of binary words of length n which have no 00010100-matches.

Crossrefs

Similar to but different from A172317.

Programs

  • GAP
    a:=[1,2,4,8,16,32,64,128];; for n in [9..40] do a[n]:=2*a[n-1]-a[n-6]+a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^6+x^7)/(1-2*x+x^6-x^7-x^8) )); // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(coeff(series((1+x^6+x^7)/(1-2*x+x^6-x^7-x^8), x, n+1), x, n), n = 0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    CoefficientList[Series[(1+x^6+x^7)/(1-2*x+x^6-x^7-x^8), {x,0,40}], x] (* G. C. Greubel, Sep 13 2019 *)
    LinearRecurrence[{2,0,0,0,0,-1,1,1},{1,2,4,8,16,32,64,128},40] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x^6+x^7)/(1-2*x+x^6-x^7-x^8)) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    def A234589_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^6+x^7)/(1-2*x+x^6-x^7-x^8)).list()
    A234589_list(40) # G. C. Greubel, Sep 13 2019