cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234597 Number of Weyl group elements, not containing an s_1 factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type D and rank n.

Original entry on oeis.org

5, 11, 21, 48, 107, 229, 501, 1099, 2394, 5225, 11417, 24923, 54409, 118808, 259403, 566361, 1236597, 2699975, 5895058, 12871185, 28102765, 61359099, 133970477, 292509056, 638659595, 1394439181, 3044596421, 6647523443, 14514097002, 31689848889, 69191112641
Offset: 4

Views

Author

Erik Insko, Dec 28 2013

Keywords

Examples

			For n=6, a(6) = A234576(6) + A234576(5)= 14+7 = 21.
		

Crossrefs

Cf. A234576.

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 4:
    elif n=5 then return 7:
    elif n=6 then return 14:
    elif n=7 then return 34:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n<=3 then return 0:
    elif n=4 then return 5:
    elif n=5 then return 11:
    else return
    r(n)+r(n-1):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1,1,3,1},{5,11,21,48},40] (* Harvey P. Dale, Feb 17 2016 *)
  • PARI
    Vec(-x^4*(x^3+5*x^2+6*x+5)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 30 2013

Formula

a(n) = A234576(n) + A234576(n-1).
a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x^4*(x^3+5*x^2+6*x+5) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 30 2013