A234717 a(n) = floor(n/(exp(1/(2*n))-1)).
1, 7, 16, 30, 47, 69, 94, 124, 157, 195, 236, 282, 331, 385, 442, 504, 569, 639, 712, 790, 871, 957, 1046, 1140, 1237, 1339, 1444, 1554, 1667, 1785, 1906, 2032, 2161, 2295, 2432, 2574, 2719, 2869, 3022, 3180, 3341, 3507
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
Table[Floor[n/(Exp[1/(2 n)] - 1)], {n, 100}] (* Wesley Ivan Hurt, Apr 01 2022 *)
Formula
From Ralf Stephan, Mar 28 2014: (Start)
a(n) = (1/4)*(8n^2 - 2n - 1 + (-1)^n).
G.f.: x*(2*x^2 + 5*x + 1)/((1-x^2)*(1-x)^2). (End)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Wesley Ivan Hurt, Apr 01 2022
E.g.f.: (x*(4*x + 3)*cosh(x) + (4*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Nov 23 2023
Comments