A234742 Product of the binary encodings of the irreducible factors (with multiplicity) of the polynomial over GF(2) whose encoding is n.
0, 1, 2, 3, 4, 9, 6, 7, 8, 21, 18, 11, 12, 13, 14, 27, 16, 81, 42, 19, 36, 49, 22, 39, 24, 25, 26, 63, 28, 33, 54, 31, 32, 93, 162, 91, 84, 37, 38, 99, 72, 41, 98, 75, 44, 189, 78, 47, 48, 77, 50, 243, 52, 57, 126, 55, 56, 117, 66, 59, 108, 61, 62, 147, 64, 441
Offset: 0
Examples
3 has binary representation '11', which encodes the polynomial X + 1, which is irreducible in GF(2)[X], so the result is just a(3)=3. 5 has binary representation '101' which encodes the polynomial X^2 + 1, which is reducible in the polynomial ring GF(2)[X], factoring as (X+1)(X+1), i.e., 5 = A048720(3,3), as 3 ('11' in binary) encodes the polynomial (X+1), irreducible in GF(2)[X]. 3*3 = 9, thus a(5)=9. 9 has binary representation '1001', which encodes the polynomial X^3 + 1, which factors (in GF(2)[X]!) as (X+1)(X^2+X+1), i.e., 9 = A048720(3,7) (7, '111' in binary, encodes the other factor polynomial X^2+X+1). 3*7 = 21, thus a(9)=21. 25 has binary representation '11001', which encodes the polynomial X^4 + X^3 + 1, which is irreducible in GF(2)[X], so the result is just a(25)=25.
Links
Crossrefs
A235035 gives the k for which a(k)=k.
A236853(n) gives the number of times n occurs in this sequence.
Programs
-
PARI
A234742(n)=factorback(subst(lift(factor(Mod(1,2)*Pol(binary(n)))),x,2)) \\ M. F. Hasler, Feb 18 2014, corrected Andrew Howroyd, Aug 01 2018
Formula
To compute a(n): factor the polynomial over GF(2) encoded by n, into its irreducible factors; in other words, find a unique multiset of terms i, j, ..., k (not necessarily distinct) from A014580 for which i x j x ... x k = n, where x stands for the carryless multiplication A048720. Then a(n) = i*j*...*k is the product of those terms with ordinary multiplication. Because of the effect of the carry-bits in the latter, the result is always greater than or equal to n, so we have a(n) >= n for all n.
a(2n) = 2*a(n).
A236379(n) = a(n) - n.
For all n, a(n) >= A236837(n).
Comments